三角形面积的计算教案(优秀3篇)

时间:2023-06-19 08:53:39 | 来源:啦啦作文网

导语:学习犹如农民耕作,汗水滋润了种子,汗水浇灌了幼苗,没有人瞬间奉送给你一个丰收。差异网为您精心收集了3篇《三角形面积的计算教案》,希望能够满足亲的需求。

角形面积的计算教案 篇一

教学目标:1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算。

2.培养学生观察能力、动手操作能力和类推迁移的能力。

3.培养学生勤于思考,积极探索的学习精神。

教学重点:理解三角形面积计算公式,正确计算三角形的面积

教学难点: 理解三角形面积公式的推导过程。

教学过程:

一、复习铺垫。

(一)教师提问:我们学过了哪些平面图形的面积?计算这些图形面积的公式是什么?

教师:今天我们一起研究“三角形的面积”(板书课题)

(二)共同回忆平行四边形面积的计算公式的推导过程。

二、指导探索

1.用数方格的方法求出第69页三个三角形的面积。(小组内分工合作)

2.演示课件:拼摆图形

3.评价一下以上用“数方格”方法求出三角形面积。

(二)推导三角形面积计算公式。

1.拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小。

2.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?

3.用两个完全一样的直角三角形拼。

(1)教师参与学生拼摆,个别加以指导。

(2)演示课件:拼摆图形。

(3)讨论

①两个完全一样的直角三角形拼成一个大三角形(第三种拼法)能帮助我们推导出三角形面积公式吗?为什么?

②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行四边形的面积有什么关系?

4.用两个完全一样的锐角三角形拼。

(1)组织学生利用手里的学具试拼。(指名演示)

(2)演示课件:拼摆图形(突出旋转、平移)

教师提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?

5.用两个完全一样的钝角三角形来拼

(1)由学生独立完成。

(2)演示课件:拼摆图形

6.讨论:

(1)两个完全相同的三角形都可以转化成什么图形?

(2)每个三角形的面积与拼成的平行四边形的面积有什么关系?

(3)三角形面积的计算公式是什么?

(4)如果用s表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么?(三)教学例1.

例1.一种零件有一面是三角形,三角形的底是5.6厘米,高是4厘米。这个三角形的面积是多少平方厘米?

1.由学生独立解答。

2.订正答案(教师板书)

5.6×4÷2=11.2(平方厘米)

答:这个三角形的面积是11.2平方厘米。

三、质疑调节

(一)总结这一节课的收获,并提出自己的问题。

(二)教师提问:

(1)要求三角形面积需要知道哪两个已知条件?

(2)求三角形面积为什么要除以2?

角形面积的计算教案 篇二

教学目标:

1.理解三角形面积公式的推导过程,正确运用三角形面积计算公式进行计算。

2.培养学生观察能力,动手操作能力和类推迁移的能力,进一步体会转化方法在图形中的应用。

3,通过操作,观察和比较,使学生认识转化的思想方法在研究三角形面积时的运用,发展学生的空间观念。

4.培养学生勤于思考,积极探索的学习精神。

教学重点:理解三角形面积计算公式,正确计算三角形的面积。

教学难点:理解三角形面积公式的推导过程。

学具准备:每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个平行四边形。

教学过程:

一,激发:

1.怎样计算平行四边形的面积。 (板书:平行四边形面积=底×高)

平行四边形面积的计算公式是怎样推导的

学生回答后*差异网 www.chayi5.com*,教师用教具进行演示并小结推导方法:第一步,转化图形;第二步,找到联系;第三步,推导公式。

2.(出示红领巾)这条红领巾是什么形状 它的面积是多少呢,今天这节课我们就一起来研究三角形面积的计算。(揭示课题:三角形面积的计算)

二,指导探索

(一)推导三角形面积计算公式。

1,拿出手里的平行四边形,想办法剪成两个三角形,并比较它们的大小。

2,启发提问:我们能将三角形转化成已学过的图形来研究它的面积计算公式吗

3,组织学生利用学具试拼,教师参与学生拼摆,个别加以指导。

指名演示拼摆过程,教师示范,突出旋转,平移。

刚才大家都是用两个完全一样的三角形通过旋转平移转化成已经学过的平面图形的,那如果只用一个三角形,你们能通用割补或折叠的方法将它转化成已经学过的平面图形吗 (学生展示)

同学们你们真了不起,想到的方法十分富有创意。如果大家觉得还有什么好办法,我们可以在下一节实践活动课继续讨论。让我们来一起看看黑板上大家的研究成果吧!我们发现两个完全一样的三角形,无论是直角,锐角还是钝角三角形,都可以拼成一个平行四边形。

4,提问:

①每个三角形的面积与拼成的平行四边形的面积有什么关系

②三角形的底和高与拼成的平行四边形的底和高之间有什么联系

③三角形的面积该如何计算

引导学生明确:

①两个完全一样的三角形都可以拼成一个平行四边形,每个三角形的面积等于拼成的平行四边形面积的一半。(同时板书)

②三角形的底就是这个平行四边形的底,三角形的高就是平行四边形的高。(同时板书)

③为什么要加上"除以2" (强化理解推导过程)

板书:三角形面积=底×高÷2

5,如果用s表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的计算公式可以写成什么

(二)教学例1

要求三角形面积需要知道哪两个已知条件

红领巾的底是100cm,高33cm,它的面积是多少平方厘米

1.由学生独立解答。

2.订正答案(教师板书)

三,质疑调节

(一)总结这一节课的收获,并提出自己的问题。

(二)教师提问:

(1)怎样求三角形的面积

(2)求三角形面积为什么要除以2

(3)三角形的面积计算公式是怎样推导出来的

四,反馈练习

(一)下面平行四边形的面积是12平方厘米,求画斜线的三角形的面积。

(二)计算下面每个三角形的面积。

1.底是4.2米,高是2米;

2.底是3分米,高是1.3分米;

3.底是1.8米,高是。1.2米;

(三) 判断

1,一个三角形的底和高是4厘米,它的面积就是16平方厘米。( )

2,等底等高的两个三角形,面积一定相等。 ( )

3,两个三角形一定可以拼成一个平行四边形。 ( )

4,三角形的底是3分米,高是20厘米,它的面积是30平方厘米。( )

五,作业:85页做一做和练习十六1题

板书设计:

三角形面积的计算

因为:平行四边形的面积=底×高, 例1… …

三角形面积=拼成的平行四边形的一半, 100×33÷2=1650(cm)

所以三角形面积=底×高÷2

s=ah÷2

教学反思:

《三角形的面积》在我之前已经先后听过两名同年组教师执教此课。

前几位教师的优秀作法。

第一位教师的精彩在于学生探究拼摆的结果纷呈。有的学生将两个完全一样的三角形转化成平行四边形,有的将两个完全一样的直角三角形转化成长方形,还有的学生将两个完全一样的等腰直角三角形转化成了正方形。面对这么多的转化结果,是一一进行分析从而得出相同的结论还是…… 这位教师通过巧妙设问引导学生发现其中的联系,从而大大节省了时间。"平行四边形,长方形,正方形这三种图形有什么共同特别呢 "果然,学生很快就发现正方形,长方形是特殊的平行四边形,从而很快使研究聚焦到三角形与所拼成的平行四边形面积之间有怎样的关系上来。

第二位教师的精彩则体现在她充分尊重学生原有认知基础,不回避学生的问题。如在请学生尝试如何将三角形转化成已经学习过的平面图形时,有的学生仍旧采用割补法,将三角形沿它的一条高剪下,然后拼摆。可由于剪拼的是任意三角形,所以无论如何旋转,平移都无法转化成已经学过的平面图形。在多次尝试割补法无法成功找到解决问题的途径后,老师引导同学们另辟蹊径,从而发现用两个完全一样的的三角形拼摆的转化方法。又如当学生回答"两个三角形可以拼成一个平行四边形"时,教师立即出示两个面积不同的三角形请学生再次拼摆。此后学生完善说法为"将两个面积相等的三角形可以拼成一个平行四边形"时,教师又出示两张面积相同的纸(一张是4×3,另一张是2×6),告诉学生面积相同并不一定形状相同,最后学生终于正确表述为"将两个完全一样的三角形可以拼成一个平行四边形".而且在这一过程中,学生清晰地明白了"完全一样"包括面积相同,形状相同两层含义。

我在设计教案时,考虑到绝大多数学生能够由梯形面积的推导方法迁移出三角形的推导方法,因此不回避现状,将计就计,先请学生将平行四边形剪成两个三角形,在此基础上再放手让学生探索,最后"杀一回马枪",请学生"只用一个三角形,能通用割补或折叠的方法将它转化成已经学过的平面图形吗 "学生的方法还真是丰富。

角形面积的计算教案 篇三

备课教师 钱燕春

所属册数 第九册

教学目标 11.使学生经历操作、观察、填表、讨论、归纳等数学活动,探索并掌握三角形的面积公式,能正确计算三角形的面积,并应用公式解决简单的实际问题。 2.使学生进一步体会转化方法的价值,培养学生应用已有知识解决新问题的能力,发展学生的空间观念和初步的推理能力。

重点难点 教学重点:理解并掌握三角形面积的计算公式。教学难点:理解三角形面积的推导过程。

课前准备 多媒体课件,第127页的3对三角形。

教学设计:

一、初步感知

1.出示例4,明确题意。

图中每个小方格表示1平方厘米。仔细观察这3个平行四边形,你能说出每个涂色三角形的面积吗?先自己想一想、算一算,再在小组里交流你的方法。

2.提问:为什么可以用‘‘平行四边形的面积÷2”求出每个涂色三角形的面积呢?

根据学生的回答,课件演示:将平行四边形沿对角线剪开,旋转、平移、重叠。

让学生观察演示过程,说说发现,并相机总结:每个平行四边形中的两个三角形是完全相同的;每个涂色三角形的面积是所在平行四边形面积的一半。

3.揭题:三角形与平行四边形究竟有怎样的联系?三角形的面积可以怎样计算呢?这就是今天我们要研究的问题——三角形面积的计算。(板书课题)

二、探究公式

1.动手操作,填表分析。

(1)出示例5中的三角形。

①按角的特点分类,:这几个三角形分别是什么三角形? (直角三角形、锐角三角形、钝角三角形)

②根据图中给出的数据,说出每个三角形的底和高分别是多少。

③每人从第123页上选一个三角形剪下来,与例5中相应的三角形拼成平行四边形。(要提醒每个小组注意:组内所选的三角形三种都要齐全)

教师加强巡视,对拼平行四边形有困难的学生及时加以指导。

④组织讨论:通过操作,你认为拼成一个平行四边形的两个三角形有什么特点?

进一步明确:用两个完全一样的三角形才可以拼成一个平行四边形。

(2)根据要求测量、计算:拼成的平行四边形的底、高、面积分别是多少?每个三角形的底、高和面积呢?

(3)汇总数据,填写表格,初步归纳。

①要求学生把小组内得到的不同数据填在书上的表格中。

②提问:你是怎样算出三角形的面积的?

从表中你能看出三角形与拼成的平行四边形还有怎样的联系?

2.讨论交流,得出公式。

(1)出示讨论题,小组开展讨论。

①拼成平行。四边形的两个三角形有什么关系?

②拼成的平行四边形的底和高与三角形的底和高有什么关系?每个三角形的面积与拼成的平行四边形的面积呢?

③根据平行四边形的面积公式,怎样求三角形的面积?

(2)全班交流。

①交流第一个问题时,课件演示将每组中两个三角形重叠,让学生明确认识到:不管选择哪种三角形,拼成平行四边形的两个三角形必须完全相同。

②交流第二个问题时,课件可以闪烁相应的底和高。得出:每个三角形与拼成的平行四边形等底等高,每个三角形的面积是拼成的平行四边形面积的一半。

③引导学生逐步表达如下的思考过程:

因为平行四边形的面积=底×高,每个三角形的面积等于拼成的平行四边形的面积的一半,所以,三角形的面积二底×高÷2。

(3)引导学生用字母表示三角形的面积公式。

(4)让学生看书上的例4、例5,回顾刚才的推导过程。如果还有疑问,可提出讨论。反馈时要求学生用清晰的语言表述三角形面积公式的推导过程。

三、应用公式

1、指导完成“试一试”。

出示题目,指名读题,学生独立解答。交流时再说说应用的面积公式。

2.指导完成“练一练”。

第l题先让学生回忆拼的过程,再回答。第2题看图口答。两题都要让学生说说自己是怎样想的。

3、完成练习三第1- 3题。

第1题口答。,

第2题独立练习,要求先想一想面积公式,再列式计算。交流时,再让学生说说每个三角形的底和高分别是多少,以及计算时为什么要“÷2”。

第3题先让学生独立完成再适当交流。

四、介绍“你知道吗”

1.课件播放“你知道吗”内容。

2.让学生说说自己对“半广以乘正从”的理解。然后课件按教材插图的样子动态演示,将三角形转化成长方形。要求学生仿照例5的推导过程,研究转化后的长方形与三角形的关系,从不同的角度进一步加深对三角形面积公式的理解。

五、全课总结

它山之石可以攻玉,以上就是差异网为大家整理的3篇《三角形面积的计算教案》,希望对您有一些参考价值。