数学必修4教案优秀5篇

时间:2023-06-19 13:21:18 | 来源:啦啦作文网

在教学工作者开展教学活动前,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。怎样写教案才更能起到其作用呢?读书破万卷下笔如有神,以下内容是差异网为您带来的5篇《数学必修4教案》,希望可以启发、帮助到大朋友、小朋友们。

数学必修4教案 篇一

一、教学目标

1、知识与技能

(1)理解直线与圆的位置关系的几何性质;

(2)利用平面直角坐标系解决直线与圆的位置关系;

(3)会用“数形结合”的数学思想解决问题、

2、过程与方法

用坐标法解决几何问题的步骤:

第一步:建 立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;

第二步:通过代数运算,解决代数问题;

第三步:将代数运算结果“翻译”成几何结论、

3、情态与价值观

让学生通过观察图形,理解并掌握直线与圆的方程的应用,培养学生分 析问题与解决问题的能力、

二、教学重点、难点:

重点与难点:直线与圆的方程的应用、

三、教学设想

问 题设计意图师生活动

1、你能说出直线与圆的位置关系吗?启发并引导学生回顾直线与圆的位置关系,从而引入新课、师: 启发学生回顾直线与圆的位置关系,导入新课、

生:回顾,说出自己的看法、

2、解决直线与圆的位置关系,你将采用什么方法?

理解并掌握直线与圆的位置关系的解决办法与数学思想、师:引导学生通过观察图形,回顾所学过的知识,说出解决问题的方法、

生:回顾、思考、讨论、交流,得到解决问题的方法、

问 题设计意图师生活动

3、阅读并思考教科书上的例4,你将选择什么方 法解决例4的问题

指导学生从直观认识过渡到数学思想方法的选择、师:指导学生观察教科书上的图形特征,利用平面直角坐标系求解、

生:自 学例4,并完成练习题1、2、

师:分析例4并展示解题过程,启发学生利用坐标法求 ,注意给学生留有总结思考的时间、

4、你能分析一下确定一个圆的方程的要点吗?使学生加深对圆的方程的认识、教师引导学生分析圆的方程中,若横坐标确定,如何求出纵坐标的值、

5 、你能利用“坐标法”解决例5吗?巩 固“坐标法”,培养学生分析问题与解决问 题的能力、师:引导学生建立适当的平面直角坐标系,用坐标和方程表示相应的几何元素,将平面几何问题转化为代数问题、

生:建立适当的直角坐标系, 探求解决问题的方法、

6、完成教科书第140页的练习题2、3、4、使学生熟悉平面几何问题与代数问题的转化,加深“坐标法”的解题步骤、 教师指导学生阅读教材,并解决课本第140页的练习题2、3、4、教师要注意引导学生思考平面几何问题与代数问题相互转化的依据、

7、你能说出练习题蕴含了什么思想方法吗?反馈学生掌握“坐标法”解决问题的情况,巩固所学知识、学生独立解决第141页习题4、2A第8题,教师组织学生讨论交流、

8、小结:

(1)利用“坐标法”解决问对知识进行归纳概括,体会利 师:指导 学生完成练习题、

生:阅读教科书的例3,并完成第

问 题设计意图师生活动

题的需要准备什么工作?

(2)如何建立直角坐标系,才能易于解决平面几何问题?

(3)你认为学好“坐标法”解决问题的关键是什么?

(4)建立不同的平面直角坐标系,对解决问题有什么直接的影响呢?用“坐标法”解决实际问题的作用、 教师引导学生自己归纳总结所学过的知识,组织学生讨论、交流、探究、

高中高二数学必修四教案 篇二

一、教学目标

1、把握菱形的判定。

2、通过运用菱形知识解决具体问题,提高分析能力和观察能力。

3、通过教具的演示培养学生的学习爱好。

4、根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想。

二、教法设计

观察分析讨论相结合的方法

三、重点·难点·疑点及解决办法

1、教学重点:菱形的判定方法。

2、教学难点:菱形判定方法的综合应用。

四、课时安排

1课时

五、教具学具预备

教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具

六、师生互动活动设计

教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨

七、教学步骤

复习提问

1、叙述菱形的定义与性质。

2、菱形两邻角的比为1:2,较长对角线为,则对角线交点到一边距离为________.

引入新课

师问:要判定一个四边形是不是菱形最基本的判定方法是什么方法?

生答:定义法。

此外还有别的两种判定方法,下面就来学习这两种方法。

讲解新课

菱形判定定理1:四边都相等的四边形是菱形。

菱形判定定理2:对角钱互相-差异网§www.chayi5.com 垂直的'平行四边形是菱形。图1

分析判定1:首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形。

分析判定2:

师问:本定理有几个条件?

生答:两个。

师问:哪两个?

生答:(1)是平行四边形(2)两条对角线互相垂直。

师问:再需要什么条件可证该平行四边形是菱形?

生答:再证两邻边相等。

(由学生口述证实)

证实时让学生注重线段垂直平分线在这里的应用,

师问:对角线互相垂直的四边形是菱形吗?为什么?

可画出图,显然对角线,但都不是菱形。

菱形常用的判定方法归纳为(学生讨论归纳后,由教师板书):

注重:(2)与(4)的题设也是从四边形出发,和矩形一样它们的题没条件都包含有平行四边形的判定条件。

例4已知:的对角钱的垂直平分线与边、分别交于、,如图。

求证:四边形是菱形(按教材讲解)。

总结、扩展

1、小结:

(1)归纳判定菱形的四种常用方法。

(2)说明矩形、菱形之间的区别与联系。

2、思考题:已知:如图4△中,,平分,,,交于。

求证:四边形为菱形。

八、布置作业

教材P159中9、10、11、13

高中数学必修4教案 篇三

教学准备

教学目标

1、知识与技能

(1)进一步理解表达式y=Asin(ωx+φ),掌握A、φ、ωx+φ的含义;(2)熟练掌握由的图象得到函数的图象的方法;(3)会由函数y=Asin(ωx+φ)的图像讨论其性质;(4)能解决一些综合性的问题。

2、过程与方法

通过具体例题和学生练习,使学生能正确作出函数y=Asin(ωx+φ)的图像;并根据图像求解关系性质的问题;讲解例题,总结方法,巩固练习。

3、情感态度与价值观

通过本节的学习,渗透数形结合的思想;通过学生的亲身实践,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受数学的严谨性,培养学生逻辑思维的缜密性。

教学重难点

重点:函数y=Asin(ωx+φ)的图像,函数y=Asin(ωx+φ)的性质。

难点:各种性质的应用。

教学工具

投影仪

教学过程

【创设情境,揭示课题】

函数y=Asin(ωx+φ)的性质问题,是三角函数中的重要问题,是高中数学的重点内容,也是高考的热点,因为,函数y=Asin(ωx+φ)在我们的实际生活中可以找到很多模型,与我们的生活息息相关。

五、归纳整理,整体认识

(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?

六、布置作业:习题1-7第4,5,6题。

课后小结

归纳整理,整体认识

(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?

课后习题

作业:习题1-7第4,5,6题。

高中数学必修4优秀教案 篇四

教学准备

教学目标

1、 知识与技能

(1)进一步理解表达式y=Asin(ωx+φ),掌握A、φ、ωx+φ的含义;(2)熟练掌握由 的图象得到函数 的图象的方法;(3)会由函数y=Asin(ωx+φ)的图像讨论其性质;(4)能解决一些综合性的问题。

2、 过程与方法

通过具体例题和学生练习,使学生能正确作出函数y=Asin(ωx+φ)的图像;并根据图像求解关系性质的问题;讲解例题,总结方法,巩固练习。

3、 情感态度与价值观

通过本节的学习,渗透数形结合的思想;通过学生的亲身实践,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受数学的严谨性,培养学生逻辑思维的缜密性。

教学重难点

重点:函数y=Asin(ωx+φ)的图像,函数y=Asin(ωx+φ)的性质。

难点: 各种性质的应用。

教学工具

投影仪

教学过程

【创设情境,揭示课题】

函数y=Asin(ωx+φ)的性质问题,是三角函数中的重要问题,是高中数学的重点内容,也是高考的热点,因为,函数y=Asin(ωx+φ)在我们的实际生活中可以找到很多模型,与我们的生活息息相关。

五、归纳整理,整体认识

(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?

六、布置作业: 习题1-7第4,5,6题。

课后小结

归纳整理,整体认识

(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?

课后习题

作业: 习题1-7第4,5,6题。

板书

高一上册数学必修四教案 篇五

教学目标

1、掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用。

(1)能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象。

(2)能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题。

2、通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力。

3、通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性。

教材分析

(1)对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的。故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解。对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸。它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础。

(2)本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质。难点是利用指数函数的图象和性质得到对数函数的图象和性质。由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点。

(3)本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开。而通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点。

教法建议

(1)对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质。

(2)在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这条主线引导学生思考的方向。这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,从而提高学习兴趣。

以上就是差异网为大家整理的5篇《数学必修4教案》,您可以复制其中的精彩段落、语句,也可以下载DOC格式的文档以便编辑使用。