七年级数学下册教学设计优秀7篇
作为一名专为他人授业解惑的人民教师,总不可避免地需要编写教案,教案是教学活动的依据,有着重要的地位。那么教案应该怎么写才合适呢?下面是差异网整理的7篇《七年级数学下册教学设计》,希望能够满足亲的需求。
七年级数学下册教学设计 篇一
教学目标
会进行单项式与多项式相乘的运算。
理解单项式与多项式相乘的算理,体会乘法对加法的分配律的作用和转化的数学思想。
在探索单项式与多项式相乘的过程中,体会利用乘法分配律化未知为已知的转化的数学思想。
使学生获得成就感,培养学习数学的兴趣。
重点难点
重点
单项式与多项式相乘的运算法则及其运用
难点
灵活地运用单项式与多项式相乘的运算解决数学问题。
教学过程
一、复习导入
1. 计算单项式乘单项式时,要把系数和同底数幂分别相乘,这样做的依据是什么?体现了怎样的数学思想?
2. 你能用字母表示乘法的分配律吗?
3. 类似的,对于单项式乘以多项式,比如
你能将它转化成已经学过的单项式乘单项式来计算吗?
二、新课讲解
探究新知
1.怎样计算 ?
学生在已有的知识经验基础上,想到运用乘法分配律将问题进行转化:
教师指出,可以把单项式看成一个数,把多项式看成3个数的和。
2. 下面的运算该如何转化成单项式乘单项式呢?请你试一试:
(1) ;(2)
利用变式,进一步强化学生对算理的理解。学生互相交流后,教师板书,强调转化的过程中要把一个项(包括项前的符号)整个的看成一个数,这样能避免符号错误。
3. 你能根据上面的运算,用文字叙述一下单项式乘多项式的方法吗?
引导学生用自己的话叙述上面的运算过程,然后师生共同总结:
单项式与多项式相乘,先用单项式成多项式中的每一项,再把所得的积相加。
通过乘法分配律,把单项式乘多项式转化成已经解决了的单项式乘单项式问题,这里体现了转化的数学思想。
三、典例剖析
例1. 计算:
(1) ; (2)
学生解答各题,教师巡回指导,发现学生解题中存在的共同错误并点评,注意强调:
单项式乘以多项式要特别重视转化的过程,初学时这一步不要省略,以后熟练了可以逐步省略。
例2 求 的值,其中
提问学生,可以直接把 带进式子运算吗?如果觉得运算很繁琐,你有其它的建议吗?
引导学生观察思考后,让学生尝试解答,之后教师板书示范,共同总结出方法:
计算代数式的值的一般步骤是先化简,再求值。
四、课堂练习
基础练习:
1.计算:
(1) ; (2) ;
(3) ; (4)
2.先化简,再求值:
,其中
学生练习,教师巡视,注意发现学生的错误,组织学生对错误进行分析,切实夯实基本运算能力。
提高练习
3.已知 ,求代数式 的值。
4.已知 ,求 的值。
让学生自己分析,相互讨论,丰富解决数学问题的经验。
五、小结
师生共同回顾单项式乘以多项式的运算法则,体会转化的数学思想所起的作用,交流解答运算题的经验。教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。
六、布置作业
P41 第7题
七年级数学下册教案 篇二
〖教学目标〗
1、经历探索多项式的乘法运算法则的过程,掌握多项式与多项式相乘的法则。
2、会运用单项式与单项式,单项式与多项式,多项式与多项式相乘的法则,化简整式。
3、会用多项式的乘法解决简单的实际问题。
〖教学重点与难点〗
教学重点:多项式与多项式相乘的运算。
教学难点:例2包含了多种运算,过程比较复杂是本节的难点。
〖教学过程〗
一、创设情境,引出课题
小明找来一张铅画纸包数学课本,已知课本长a厘米,宽b厘米,厚c厘米,小明想将课本封面与封底的每一边都包进去m厘米,问如果你是小明你会在铅画纸上裁下一块多大面积的长方形?
二、引出新知,探究示例
1、合作探索学习:有一家厨房的平面布局如图1
(1)请用三种不同的方法表示厨房的总面积。
(2)这三种不同的方法表示的面积应当相等,你能用运算律解释吗?
(3)通过上面的讨论,你能总结出单项式与多项式相乘的运算规律吗?
(让学生以同桌合作的形式进行探索,然后表达交流)
答:(1)总面积:(a+n)(b+m);a(b+m)+n(b+m)或b(a+n)+m(a+n);ab+am+nb+nm
(2)总面积相等,由此可得到(a+n)(b+m)=a(b+m)+n(b+m)……①
=ab+am+nb+nm……②
第①步运用分配律把(b+m)看成一个数,第②步再运用分配律。
(3)由(a+n)(b+m)=ab+am+nb+nm师生共同总结得出多项式与多项式相乘的法则:
(学生归纳,教师板书)
2、运用新知,计算例题
例1:计算
(1)(x+y)(a+2b)(2)(3x—1)(x+3)(3)(x—1)2
解:(1)(x+y)(a+2b)=x?a+x?(2b)+y?a+y?(2b)=ax+2bx+ay+2by
(2)(3x—1)(x+3)=3x2+9x—x—3=3x2+8x—3
(3)(x—1)2=(x—1)(x—1)=x2—x—x+1=x2—2x+1
教师在示范过程中引导学生注意这三题都按多项式相乘的法则进行,运算过程中注意符号,防止漏乘,结果要合并同类项。
反馈练习:课内练习1
例2,先化简,再求值:(2a—3)(3a+1)—ba(a—4),其中a=
解:(2a—3)(3a+1)—ba(a—4)=6a2+2a—9a—3—6a2+24a=17a—3
当a=时,原式=17a—3=17×()—3=—19—3=—22
注意的几点:(1)必须先化简,再求值,注意符号及解题格式。
(2)当代入的是一个负数时,添上括号。
(3)在运算过程中,把带分数化为假分数来计算。
反馈练习:1、计算当y=—2时,(3y+2)(y—4)—(y—2)(y—3)的值。
2、课内练习2、3。
三、分层训练,能力升级
1、填空
(1)(2x—1)(x—1)=
(2)x(x2—1)—(x+1)(x2+1)=
(3)若(x—a)(x+2)=x2—6x—16,则a=
(4)方程y(y—1)—(y—2)(y+3)=2的解为
2、某地区有一块原长m米,宽a米的长方形林区增长了200米,加宽了15米,则现在这块地的面积为平方米。
3、某人以一年期的定期储蓄把20xx元钱存入银行,当年的年利率为x,第二年的年利率减少10%,则第二年到期时他的本利和为多少元?
四、小结
让学生谈谈通过这节课的学习,有哪些收获与疑问?教师及时总结内容并解答疑惑。
五、布置作业
课本的分层作业题。
七年级数学下册教学设计 篇三
二元一次方程组是一元一次方程教学的延续与深化。很多一元一次方程应用题均可用二元一次方程组来解决而得以简化,如:数学课外兴趣小组成员去建设工地参加实践活动,男同学戴白色安全帽,女同学戴红色安全帽,在每个男同学看来,红白安全帽一样多,而在女同学看来,白色安全帽是红色安全帽的2倍,问男女同学各是多少名?——这个问题若用一元一次方程来解,有两种解法:(1)可设男同学x名,则女同学(x—1)名,根据“男同学人数=2(女同学人数—1)”这个等量关系可列方程:x=2×[(x—1)—1];(2)设女同学y名,则男同学2(y—1)名,根据“男同学人数—1=女同学人数”这个等量关系可列方程:2(y—1)—1=y。如此解决问题比较“绕”,数学的特点是“趋简”、“趋明了”,于是促生了“寻找另外的简捷的办法”的欲望。
由于本题有两个等量关系:男同学人数=2(女同学人数—1)、男同学人数—1=女同学人数;两个未知数:男生人数、女生人数,如果设男生x人,女生y人,可以得到两个方程:(1)x—1=y,(2)x=2(y—1),要解决这个问题,就须寻找满足两个方程的x、y值,于是就延伸到了解二元一次方程组的问题。
由于学生已经学会了用一元一次方程解决这个问题,一旦提及求二元一次方程组的解,学生自然会隐隐约约地想到它们之间必然存在某种联系,于是引导学生观察、联系、联想,可以“化归”为一元一次方程解决这个问题:
从而实现问题的解决。
课程结束后,还要引导学生对所学知识进行升华:列一元一次方程解应用题,与列二元一次方程组解应用题,有什么特点?学生们经过思考争辩,最终达成如下意见即可视为完成教学任务:(1)列一元一次方程时,需要将其中的一个量用含有另一个量的式子表示出来,也就是说,寻找相等关系容易,列方程要相对困难一些。(2)列二元一次方程组时,只要找出相等关系(2个)设未知数(2个),就可以较容易地列出方程组,所以列方程(组)相对简单,而解方程组要难一些,顺着这种感觉,可以引导学生研究如何便捷地解方程组就成为当务之急了。
最新七年级数学下册教案人教版例文 篇四
教学目标:
1、运用所学的圆、比例等知识解决问题;了解普通自行车和变速自行车的速度与其内在结构的关系,知道变速自行车能变化出多少种速度。
2、通过解决生活中常见的有关自行车的问题,培养学生解决实际问题的能力
3、经历解决问题的基本过程,了解数学与生活的密切关系。
重点难点: 运用所学知识解决实际问题。
教学过程:
一、揭示课题
1、说一说你了解到的有关这两种自行车(普通自行车和变速自行车)的知识。
2、自行车里会有数学问题吗?想一想。
二、研究普通自行车的速度与内在结构的关系
1、提出问题:两种自行车,各蹬一圈。能走多远?引出学生对自行车里的数学的研究。
2、分析问题
(1)学生讨论如何解决问题。
方案一:直接测量,但是误差较大。
方案二:根据车轮的周长乘以后车轮转的圈数,来计算蹬一圈车子走的距离。
(2)讨论:前齿轮转一圈,后齿轮转几圈?
前齿轮转的圈数× 前齿轮的齿数=后齿轮转的圈数× 后齿轮的齿数
建立数学模型,收集数据并求解。
(1)蹬一圈车子走的距离=车轮的周长×(前齿轮的齿数 :后齿轮的齿数)
(2)分组收集所需要的数据,带入上述模式,求出答案。
4、汇报结果。各小组展示并解释本组的研究过程和结果,在比较结果。三、研究变速自行车能组合出多少种速度?
1、提出问题:变速自行车能组合出多少种速度?
(1)了解变速自行车的结构。(有2个前齿轮,6个后齿轮。)
(2)根据这个结构,可以组合出多少种速度?
2、分析问题,求解,汇报。
3、蹬同样的圈数,哪种组合使自行车走得最远?
四、课堂作业
1、一辆自行车的车轮直径是0.7米,前齿轮有48个齿,后齿轮有16个齿,蹬一圈自行车前进多少米?
2、一辆前齿轮有28个齿,后齿轮有14个齿,蹬一圈自行车前进5米。求自行车的车轮直径。(保留两为小数)
五、课堂小结
自行车里的学问可真大,你还能提出一些数学问题并解决吗?
最新七年级数学下册教案人教版例文 篇五
教学目标:
1. 使学生进一步理解比例尺的意义,掌握利用比例尺求图上距离和实际距离的方法。
2. 使学生能综合运用比例尺知识,解决有关问题,提高学生解决问题的能力。
教学重点:求图上距离和实际距离。
教学难点:求实际距离。
教学过程:
一旧知铺垫
1. 什么叫做比例尺?
板书:图上距离:实际距离=比例尺
2.说一说下列各比例尺表示的具体意义。
(1)比例尺1:45000
(2)比例尺80:1
(3)0----40㎞
1. 教学例2。
(1) 出示课文例题及插图。
(2) 说一说从中你得到哪些信息。
已知条件:
① 1号线的图上长度是10㎝;
② 这幅地图的比例尺1:500000。
所求问题:1号线的实际长度是多少?
(3) 你认为可以用什么方法解决问题?
① 学生尝试解决问题。
② 教师巡视课堂,了解解答情况,并对个别学生进行指导,帮助他们找到解决问题的方法。
③ 汇报解答情况。
方程解:
解:设地铁1号线的实际长度是X厘米。
根据图上距离 :实际距离=比例尺,可以例比例式解答
10/X=1/500000
X=10×500000(问:根据什么?)
根据比例的基本性质。
X=5000000
5000000㎝=50㎞
答:略
算术解:
根据图上距离除以实际距离等于比例尺 ,得出:实际距离等于图上距离除以比例尺
10÷1/500000
=10×500000
=5000000(㎝)
5000000㎝=50㎞
答:略
2. 教学例3。
(1) 出示例题,学生了解题目要求。
(2) 讨论:你想怎样画?
通过讨论,使学生进一步理解在绘制平面图的时候,需要把实际距离按一定的比缩小,再画在图纸上。这时,就要确定;图上距离和相对应的实际距离的比。
① 确定比例尺;
② 求出图上的距离;
③ 画出操场的平面图。
(3) 小组同学合作,解决问题。
学生练习活动时,教师巡视课堂,了解学生解决问题的情况,记录存在的问题。
(4) 汇报,交流。
① 小组派代表说明你的方案和结果。
② 选择合适的方案,展示结果,并说明解决方案
如:选择比例尺1:1000画图。求出图上的长度
80×1/1000=0.08m
0.08m=8㎝
图上的宽=60×1/1000=0.06m
0.06m=6㎝
操场平面图:
三巩固练习
1.完成课文“”做一做”
2. 完成课文练习八第4~10题。
辅导记录:学习用比例尺解决问题后,要求学生必须会用比例的知识解答,个别学生图简便,直接用算术法,而忽略了比例尺的方法,这种方法的单位换算是最容易出错的。
补充练习:
比例尺
1、在比例尺是1∶5000000的地图上,量的甲乙两地的距离是8厘米,甲乙两地的实际距离是( )千米。
2、在一幅地图上,甲、乙两地之间的距离是3厘米,甲、乙两地的实际距离是150千米。这幅地图的比例尺是( )
3、有一种手表零件长5毫米,在设计图纸上的长度是10厘米,图纸的比例尺是( )
4、从海口到三亚全长340千米,如果将它画在1:50000的地图上,约是( )厘米。(得数保留整厘米数)
5、一块长方形的地,长75米,宽30米,用1/1000 的比例尺把它画在图纸上,长画( ),宽画( )。
6、大新小学体育场长150米,宽80米,请用1/10000 的比例尺把它画在图纸上,并求出图纸上的体育场的面积是多少?
7、在长28厘米,宽18厘米的纸上,画学校的平面图。校园东西长520米,南北宽320米。用多大的比例尺比较合适?运动场长150米,在图上应画多长?
8、在比例尺是1:400的地图上,量得一个长方形的周长是20厘米,长与宽的比是3:2。这个长方形的实际面积是多少?
填空:
1、如果 a×3=b×5,那么 a∶b=( )∶( )。
2、1:2000的图纸上面积是24平方厘米,实际面积是( )公顷。
3、一个精密仪器零件图纸的比例尺是50:1,图上长5厘米,实际长( )厘米。
4、将2、5、8再配上一个数组成比例,这个数可以是( )。
5、如果x÷y = 712 ×2,那么x和y成( )比例;如果x:4=5:y,那么x和y成( )比例。
6、一种精密零件长5毫米,把它画在比例尺是12:1的零件图上长应画( )厘米。
7、在一幅中国地图上量得甲地到乙地的距离是4厘米,而甲地到乙地的实际距离是180千米。这幅地图的比例尺是( )。
8、、A的 与B的 相等,那么A∶B=( )∶( ),它们的比值是( )。
9、在比例尺是1:2000000的地图上,量得两地距离是38厘米,这两地的实际距离是( )千米。
10、甲乙两个互相咬合的齿轮,它们的齿数比是7:3,甲乙齿轮的转数比是( ).
11、在一张比例尺为1∶300的图纸上量得一个房间的长是2厘米,宽1.5厘米,这个房间的实际长是( )米;如果有一条道路的长60米,画在这张图纸上应画( )厘米。
七年级数学下册教学设计 篇六
6.3.1实数
第一课时
【教学目标】
知识与技能:
①了解无理数和实数的概念以及实数的分类;
②知道实数与数轴上的点具有一一对应的关系。
过程与方法:
在数的开方的基础上引进无理数的概念,并将数从有理数的范围扩充到实数的范围,从而总结出实数的分类,接着把无理数在数轴上表示出来,从而得到实数与数轴上的点是一一对应的关系。
情感态度与价值观:
①通过了解数系扩充体会数系扩充对人类发展的作用;
②敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题。
教学重点:
①了解无理数和实数的概念;
②对实数进行分类。
教学难点:对无理数的认识。
【教学过程】
一、复习引入无理数:
利用计算器把下列有理数3,,34795,,写成小数的形式,它们有什么特征? 58119
发现上面的有理数都可以写成有限小数或无限循环小数的形式即:33.0,34791,50.5 0.6,5.875,0.858119
归纳:任何一个有理数(整数或分数)都可以写成有限小数或者无限循环小数的形式,
反过来,任何有限小数或者无限循环小数也都是有理数。
通过前面的学习,我们知道有很多数的平方根或立方根都是无限不循环小数,
把无限不循环小数叫做无理数。比如,5,等都是无理数。3.14159265也是无理数。
二、实数及其分类:
1、实数的概念:有理数和无理数统称为实数。
2、实数的分类:
按照定义分类如下:
整数小数)有理数(有限小数或无限循环实数分数数)无理数(无限不循环小
按照正负分类如下:
正有理数正实数负无理数实数零
负有理数负实数负无理数
3、实数与数轴上点的关系:
我们知道每个有理数都可以用数轴上的点来表示。物理是合乎是否也可以用数轴上的点表示出来吗?
活动1:直径为1个单位长度的圆其周长为π,把这个圆放在数轴上,圆从原点沿数轴向右滚动一周,圆上的一点由原点到达另一个点,这个点的坐标就是π,由此我们把无理数π用数轴上的点表示了出来。
活动2:在数轴上,以一个单位长度为边长画一个正方形,则其对角线的长度就是2以原点为圆心,正方形的对角线为半径画弧,与正半轴的交点就表示2,与负半轴的交点就是
可以把每一个无理数都在数轴上表示出来,即数轴上有些点表示无理数。
归纳:①实数与数轴上的点是一一对应的。即没一个实数都可以用数轴上的点来表示;
反过来,数轴上的每一个点都表示一个实数。
②对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大。
三、应用:
例1、下列实数中,无理数有哪些? 2。事实上通过这种做法,我们
2,2,3.14,,0,10.12112111211112,π,(4)2。 3,0.717
解:无理数有:2,5,π
2注:①带根号的数不一定是无理数,比如(4),它其实是有理数4;
②无限小数不一定是无理数,无限不循环小数一定是无理数。
比如10.12112111211112。
例2、把无理数5在数轴上表示出来。分析:类比2的表示方法,我们需要构造出长度为的线段,从而以它为半径画弧,与数轴正半轴的交点就表示5。
解:如图所示,OA2,AB1,
由勾股定理可知:OB5,以原点O与数轴的正半轴交于点C,则点C就表示5。
四、随堂练习:
1、判断下列说法是否正确:
⑴无限小数都是无理数;
⑵无理数都是无限小数;
⑶带根号的数都是无理数; ⑷所有的有理数都可以用数轴上的点来表示,反过来,数轴上所有的点都表示有理数;
⑸所有实数都可以用数轴上的点来表示,反过来,数轴上的所有的点都表示实数。
2、把下列各数分别填在相应的集合里:
有理数集合无理数集合
22, 3.1415926,7,8,2,0.6,0,,,0.313113111。 73
3、比较下列各组实数的大小:(1)4,(2)π,3.1416 (3)32,
五、课堂小结
1、无理数、实数的意义及实数的分类。 2、实数与数轴的对应关系。
六、布置作业
P57习题6.3第1、2、3题;
七年级数学下册教学设计 篇七
教学目标
掌握幂的乘方法则,并能够运用法则进行计算。
会进行简单的幂的混合运算。
在推导法则的过程中,培养学生观察、概括与抽象的能力;在运用法则的过程中培养学生思维的灵活性,以及应用“转化”的数学思想方法的能力。
让学生通过参与探索过程,培养合作、探索问题的能力,以及质疑、独立思考的习惯。
重点难点
重点
幂的乘方法则的运用。
难点
幂的乘方法则的推导以及幂的混合运算。
教学过程
一、复习导入
1.表示什么意义?表示什么意思呢?
2.同底数幂乘法法则是什么,它是怎样推导的?
通过讨论,使学生正确读出式子并理解式子所表达的运算,指出这种式子表达的是幂的乘方运算,怎样进行幂的乘方运算呢?
二、新课讲解
探究新知
1.思考:
①请根据的意义计算出它的结果,并想一想每一步计算的依据是什么?
②你能说出、的意义吗?
③请你计算、,并想一想每一步计算的依据是什么?
(鼓励学生站起来回答,培养学生数学表达的能力)
2.发现:
①从上面的计算中你发现了这几道题的运算结果有什么共同之处吗?从中你能发现运算的方法吗?猜一猜的结果是什么?
②验证猜想,得出结论
===(m,n都是正整数)
用语言叙述为:幂的乘方,底数不变,指数相乘。
三、典例剖析
例1计算:
(1);(2);(3)(m是正整数);(4)(n是正整数)
要求学生读出式子并按法则运算,提高符号演算的能力。注意(2)应读成a的3次幂的4次方的相反数(或者-1乘以a的3次幂的4次方),强调求相反数是运算的最后一步,训练学生在计算式子前先正确理解式子的良好习惯。
例2计算:
学生独立思考后进行交流,交流时要求学生按照先读式子,再分析式子的步骤给全班同学讲解。重视数学的表达和交流能促进学生养成良好的思维能力和思维习惯。
四、课堂练习
基础练习
1.填空:
(1);(2);
2.下面的计算对不对?如果不对,应怎样改正?
教师要注意发现学生的错误,组织学生对错误进行分析,对于第2题可以引导学生分析导致错误的原因,(1)是混淆了幂的乘法运算,(2)是把两个指数理解成了3的2次方。强调正确记忆法则,仔细分析式子里的运算。
提高训练:
3.对比同底数幂的乘法法则和幂的乘方法则,你有好的方法来记忆吗?
引导学生观察两种运算的共同点。幂的这两种运算最终都转化成了对指数的运算,其中幂的乘法转化成了指数的加法,幂的乘方转化成了指数的乘法,初一看两个法则截然不同,但从转化的角度来看,它们又有共同之处,那就是都将原来的幂的运算降了一级,乘法变了加法,乘方变了乘法。
4.自编两道同底数幂的乘法、幂的乘方混合运算题,并与同学交流计算过程与结果。
学生活动后,教师选取编的好的题向全班展示,提高学生的兴趣。
5.已知,求的值。
逆向运用幂的运算性质,能培养学生思维的灵活性。由,我们不能求出m,n的值,但我们可以从入手,观察到,从而可以通过整体代入来求解。
五、小结
师生共同回顾幂的运算法则,互相交流解答运算题的经验,教师对课堂上学生掌握不够牢固的知识进行辨析、强调与补充,学生也可以谈一谈个人的学习感受。
六、布置作业
1.P40第2题
2.自编两道同底数幂的乘法、幂的乘方混合运算题,并计算。
读书破万卷下笔如有神,以上就是差异网为大家整理的7篇《七年级数学下册教学设计》,希望可以对您的写作有一定的参考作用。
推荐作文:
- ·从100到001-记事作文800字
- ·坚持不一定胜利-励志作文600字
- ·公司公章管理制度优秀6篇
- ·红烧肉牵动我的情思-记叙文700字
- ·我学会变勇敢-记叙文500字
- ·《公共安全开学第一课》-观后感作文550字
- ·白衣天使,我想对您说-记叙文500字
- ·共享土地
- ·秋游给校长的建议书-记叙文600字
- ·猜猜猜-玩游戏作文250字
- ·不同寻常的一天-记叙文300字
- ·优秀设计师个人简历范文最新4篇
- ·谢谢友谊-记叙文500字
- ·新年活动方案精选9篇
- ·实习申请书【优秀10篇】
- ·暖-记叙文500字
- ·三同时管理制度【优秀7篇】
- ·放学-小学生仿写作文550字
- ·校园安全管理制度【最新8篇】
- ·车上-记事作文800字
- ·小学三年级语文《回乡偶书》原文、教案及教学反思最新3篇
- ·向戍边英雄致敬-抒情作文700字
- ·自查自纠情况报告(优秀7篇)
- ·企业年会策划方案流程(优秀3篇)
- ·小小银行家-日记作文350字
- ·诗词大会,我来了!-记叙文200字
- ·活动方案(优秀4篇)
- ·花未开全月未圆
- ·小学班主任教育叙事【最新6篇】
- ·雨后晴空-记叙文作文400字