初中数学平行四边形的判定教案【优秀3篇】
教学建议下面是差异网整理的3篇《初中数学平行四边形的判定教案》,如果能帮助到亲,我们的一切努力都是值得的。
平行四边形的判定 篇一
(第一课时)
一、素质教育目标
(一)知识教学点
1.掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用。
2.使学生理解判定定理与性质定理的区别与联系。
3.会根据简单的条件画出平行四边形,并说明画图的依据是哪几个定理。
(二)能力训练点
1.通过“探索式试明法”开拓学生思路,发展学生思维能力。
2.通过教学,使学生逐步学会分别从题设或结论出发寻求论证思路的分析方法,进一步提高学生分析问题,解决问题的能力。
(三)德育渗透点
通过一题多解激发学生的学习兴趣。
(四)美育渗透点
通过学习,体会几何证明的方法美。
二、学法引导
构造逆命题,分析探索证明,启发讲解。
三、重点·难点·疑点及解决办法
1.教学重点:平行四边形的判定定理1、2、3的应用。
2.教学难点:综合应用判定定理和性质定理。
3.疑点及解决办法:在综合应用判定定理及性质定理时,在什么条件下用判定定理,在什么条件下用性质定理(强调在求证平行四边形时用判定定理,在已知平行四边形时用性质定理).
四、课时安排
2课时
五、教具学具准备
投影仪,投影胶片,常用画图工具
六、师生互动活动设计
复习引入,构造逆命题,画图分析,讨论证法,巩固应用。
七、教学步骤
【复习提问】
1.平行四边形有什么性质?学生回答教师板书
2.将以上性质定理分别用命题的形式叙述出来。
【引入新课】
用投影仪打出上述命题的逆命题。
上述第一个逆命题显然是正确的,因为它就是平行四边形的定义,所以它也是我们判定一个四边形是否为平行四边形的基本方法(定义法).
那么其它逆命题是否正确呢?如果正确就可得到另外的判定方法(写出命题).
【讲解新课】
1.平行四边形的判定
我们知道,平行四边形的对角相等,反过来对角相等的四边形是平行四边形吗?
如图1,在四边形 中,如果 , ,那么 .
∴ .
同理 .
∴四边形 是平行四边形,因此得到:
平行四边形判定定理1:两组对角分别相等的四边形是平行四边形。
类似地,我们还会想到,两组对边相等的四边形是平行四边形吗?
如图1,如果 , ,连结 ,则△ ≌△ 得到 , ,那么 , ,则四边形 是平行四边形。
由此得到:
平行四边形判定定理2:两组对边分别相等的四边形是平行四边形。
(判定定理1、2的证明采用了探索式的证明方法,即根据题设和已有知识,经过推理得出结论,然后总结成定理).
我们再来证明下面定理
平行四边形判定定理3:对角线互相平分的四边形是平行四边形。
(该定理采用规范证法,如图1由学生自己证明,教师可引导学生用前面三种依据分别证明,借以巩固所学知识)
2.判定定理与性质定理的区别与联系
判定定理1、2、3分别是相应性质定理的逆定理,彼此之间分别为互逆定理,在使用时不得混淆。
例1 已知: 是 对角线 上两点,并且 ,如右图。
求证:四边形 是平行四边形。
分析:因为四边形 是平行四边形,所以对边平行且相等,由已知易证出两组三角形全等,用定义或判定定理1、2都可以,还可以连结 交 于 利用判定定理3简单。
证明:(由学生用各种方法证明,可以巩固所学过的知识和作辅助线的方法,并比较各种证法的优劣,从而获得证题的技巧).
【总结、扩展】
1.小结:(投影打出)
(1)本堂课所讲的判定定理有
(2)在今后解决平行四边形问题时要尽可能地运用平行四边形的相应定理,不要总是依赖于全等三角形,否则不利于掌握新的知识。
2.思考题
教材P144B.3
八、布置作业
教材P142中7;P143中8、9、10
九、板书设计
十、随堂练习
教材P138中1、2
补充
1.下列给出了四边形 中 、 、 的度数之比,其中能判定四边形 是平行四边形的是( )
A.1:2:3:4 B.2:2:3:3
C.2:3:2:3 D.2:3:3:2
2.在下面给出的条件中,能判定四边形 是平行四边形的是( )
A. , B. ,
C. , D. ,
3.已知:在 中,点 、 在对角线 上,且 .
求证:四边形 是平行四边形。
初中数学平行四边形的判定教案 篇二
教学目标
1.能解简易方程,并能用简易方程解简单的应用题。
2.初步培养学生方程的思想及分析解决问题的能力。
教学重点 和难点
重点:简易方程的解法和根据实际问题列出方程。
难点:正确地列出方程。
课堂 教学过程 设计
一、从学生原有的认知结构提出问题
1.针对以往学过的一些知识,教师请学生回答下列问题:
(1)什么叫等式?等式的两个性质是什么?
(2)下列等式中x取什么数值时,等式能够成立?
2.在学生回答完上述问题的基础上,引出课题
在 小学 学习 方程时,学生们已知有关方程的三个重要概念,即方程、方程的解和解方程.现在 学习 了等式之后,我们就可以更深刻、更全面 地理 解这些概念,并同时板书课题:简易方程.
二、讲授新课
1.方程
在等式4+x=7中,我们将字母x称为未知数,或者说是待定的数.像这样含有未知数的等式,称为方程.并板书方程定义.
例1? (投影)判断下列各式是否为方程,如果是,指出已知数和未知数;如果不是,说明为什么.
(1)5-2x=1;(2)y=4x-1;(3)x-2y=6;(4)2x2+5x+8.
分析:本题在解答时需注意两点:
一是已知数应包括它的符号在内;
二是未知数的系数若是1,这个省写的1也可看作已知数.
(本题的解答应由学生口述,教师利用投影片打出来完成)
2.简易方程
简易方程这一小节的前面主要是复习、归纳 小学 学过的 有关方程的基本知识,提出了算术解法与代数解法的说法,以便以后逐步讲述代数解法的优越性。
例2 解下列方程:
分析 方程(1)的左边需减去 ,根据等式的性质(2),必须两边同时减去 ,得 ,方程的左边需要乘以3,使 的系数化为1,根据等式的性质(3),必须两边同时乘以3,得 ,方程(2)的解题思路与(1)类似。
解(1)方程两边都减去 ,得
两边都乘以3,得 。
(2)方程两边都加上6,得 。
方程两边都乘以 ,得 ,即 。
注意:(1)根据方程的解的概念,我们可以将所得结果代入原方程检验,如果左边=右边,说明结果是正确的,否则,左边≠右边,说明你求得的x的值,不是原方程的解,肯定计算有错误,这时,一定要细心检查,或者再重解一遍.
(2)解简易方程时,不要求写出检验这一步.
例3 甲队有54人,乙队有66人,问从甲队调给乙队几人能使甲队人数是乙队人数的 ?
分析此题必须弄清:
一、甲、乙两队原来各有多少人;
二、变动后甲、乙两队各有多少人(注意:甲队减少的人数正是乙队增加的人数);
三、题中的等量关*差异网 www.chayi5.com*系是:
变动后甲队人数是乙队人数的 ,即变动后甲队人数的3倍等于乙队人数.
解? 设从甲队调给乙队x人,
则变动后甲队有 人,乙队有 人,根据题意,得:
答:从甲队调给乙队24人。
三、课堂练习 (投影)
1.判断下列各式是不是方程,如果是,指出已知数和未知数;如果不是,说明为什么.
(1)3y-1=2y;? (2)3+4x+5x 2 ;? (3)7×8=8×7? (4)6=0.
2.根据条件列出方程:
(l)某数的一半比某数的3倍大4;
(2)某数比它的平方小42.
3.检验下列各小题括号里的数是不是它前面的方程的解:
四、师生共同小结
1.请学生回答以下问题:
(1)本节课学习了哪些内容?
(2)方程与代数式,方程与等式的区别是什么?
(3)如何列方程?
2.教师在学生回答完上述问题的基础上,应指出:
(1)方程、等式、代数式,这三者的定义是正确区分它们的唯一标准;
(2)方程的解是一个数值(或几个数值),它是使方程左、右两边的值相等的未知数的值它是根据未知数与已知数之间的相等关系确定的.而解方程是指确定方程的解的过程,是一个变形过程.
五、作业
1.根据所给条件列出方程:
(1)某数与6的和的3倍等于21;
(2)某数的7倍比某数大5;
(3)某数与3的和的平方等于这数的15倍减去5;
(4)矩形的周长是40,长比宽多10,求矩形的长与宽;
(5)三个连续整数之和为75,求这三个数.
2.检验下列各小题括号里的数是否是它前面的方程的解:
(3)x(x+1)=12,(x=3,x=4).
平行四边形的判定 篇三
七、教学步骤
【引入新课】
由的定义和性质易得且,即“平行且相等”记为,反过来当时,四边形必为平行四边形,这就是今天要讲的判定定理4(写出课题).
【讲解新课】
(1)平行四边形的判定定理4:一组对边平行且相等的四边形是平行四边形。
引导学生结合图1,把已知,求证具体化。
分析:因为已知,所以只须证出,为此只需连对角线,通过全等三角形来实现。
证明:(由学生口述)
师:我们已经全面的掌握了平行四边形的判定方法,共有几个方法?哪几个?由学生归纳后用投影仪打出。
(2)平行四边形判定等知识的综合应用
教师指出:平行四边形的有关知识同学们都已掌握,但如何灵活、综合、有效地用来解决有关问题是非常重要的。因此,对典型例题的分析、论证、方法技巧的探讨运用都必须引起重视。
例2 已知: , 分别是 、 的中点,结合图1,求证: .
分析:证明两条线段相等,从它们在图形中的位置看,可证明两个三角形全等或证明四边形 为平行四边形(显然后者较前者简单)
证明:(略).
此例题综合运用了平行四边形的性质和判定,证题思路是:先运用平行四边形的性质得到判定另一个四边形是平行四边形的条件,再应用平行四边形的性质得出结论;题目虽不复杂,但层次有三,且利用基础知识较多,因此应使学生获得清晰的证题思路。
例3 画 ,使 ,,
(按课本讲)
【总结、扩展】
1.小结
平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质来解决某些问题,例如求角的度数,线段长度,证明角相等或互补,证明线段相等或倍分等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再用四边形的性质来解决有关问题。
2.思考题:
已知:如图1,在△ 中, , .
求证:
八、布置作业
教材P143中11、12,P144中13、14
九、板书设计
十、背景知识与课外阅读
美妙的莫雷定理
已知:如图1, 和 , 和 , 和 分别为△ 的 、 、 的三等分线。
求证:∠△ 是正三角形。
这是英国数学家富兰克·莫雷在1899年提出的,不管从已知条件和结论看,都十分对称美妙,数学家柯克特称它是初等几何最惊人的定理之一。
十一、随堂练习
教材P140中1、2
补充:判断
(1)一组对边平行,一组对边相等的四边形是平行四边形( )
(2)一组对角平行,一组对角相等的四边形是平行四边形( )
(3)一组对边相等,一组对角相等的四边形是平行四边形( )
(4)一组对边平行且相等的四边形是平行四边形( )
它山之石可以攻玉,以上就是差异网为大家整理的3篇《初中数学平行四边形的判定教案》,您可以复制其中的精彩段落、语句,也可以下载DOC格式的文档以便编辑使用。
推荐作文:
- ·无法掩藏的喜欢-记叙文800字
- ·坚持党的领导,展望新征程-记叙文1200字
- ·老鹰捉小鸡-记一次游戏作文650字
- ·玩水枪-记事作文300字
- ·难忘那坚毅的眼神-记叙文作文700字
- ·窗外-记叙作文500字
- ·默契-记叙文作文700字
- ·妈妈的目光-小学生记叙作文400字
- ·大学生创业计划书优秀4篇
- ·学生开学典礼发言稿(优秀5篇)
- ·图书馆工作计划(通用3篇)
- ·钱塘湖春行-一年级散文作文200字
- ·难忘那一幕-记叙文作文600字
- ·读书的乐趣-记叙文400字
- ·问卷调查结果分析报告【优秀3篇】
- ·领导干部关于讲看齐见行动主题发言稿(精选4篇)
- ·隔壁老王头
- ·用好QQ-优秀记叙文700字
- ·布达拉宫的资料简介基本信息【最新3篇】
- ·快乐“六一”,童心依然-儿童节作文600字
- ·装饰监理工作内容及职责最新3篇
- ·这天,我回家晚了-记叙文作文700字
- ·童年趣事-童年作文700字
- ·外婆牌水煎包-记叙文作文400字
- ·寒假见闻-记叙文作文800字
- ·我的心儿怦怦跳-记叙文作文500字
- ·个人自查自纠的总结_工作总结报告格式最新10篇
- ·村七一讲话稿【优秀3篇】
- ·置业顾问的岗位职责优秀4篇
- ·小学安全应急预案3篇