比的意义教案【优秀9篇】
作为一名为他人授业解惑的教育工作者,就有可能用到教学设计,教学设计是实现教学目标的计划性和决策性活动。我们该怎么去写教学设计呢?差异网为您带来了9篇《比的意义教案》,亲的肯定与分享是对我们最大的鼓励。
比的意义教案 篇一
教学内容:
九年义务教育六年制小学数学教科书人教版五年级下册第60-62页。
教学目标:
1、在具体的情境中进一步认识分数,发展数感,体会数学与生活的密切联系。
2、理解有关单位“1”的数学内涵,进而揭示分数的意义,认识分数单位的含义。
教学重点:
分数意义的归纳与单位“1”的抽象。
教学难点:
把多个物体组成的一个整体看作单位“1”。
课前谈话:
同学们猜一猜,在课堂上,老师最喜欢什么样的学生?(用心听讲的学生;踊跃发言,并且敢于表达和坚持自己的观点;)老师会不会批评回答错误的学生?(孩子是什么?错误中成长的天使。)
教学过程:
一、创设情境,引入新课
老师想考考同学们,看看同学们能不能从现实生活中发现数学问题,敢接受老师的挑战吗?同学们一定要认真听啊。星期天,亮亮妈妈去逛商场了,商场里的沙发坐垫正在打折,亮亮妈妈想买一套。但是,她遇到麻烦了,她不知道家里沙发的长和宽呀。亮亮妈妈就给家里打了个电话:亮亮,量一量家里沙发的长和宽,好吗?遗憾的是亮亮找不到的尺子。亮亮呀可聪明了,他想了一个绝妙的办法。他说,妈妈,家里还有一条丝巾,和你戴的丝巾一模一样,我用丝巾量好吗?用丝巾量,这个办法很好啊。亮亮开始量沙发了:沙发的长正好是两个丝巾的长,沙发的宽么,哦,沙发的宽比丝巾的长度短许多,亮亮把丝巾对折后再量,沙发的宽比对折后的'丝巾短一些,亮亮把丝巾折了三次后再量,这时沙发的宽正好是三折后丝巾的长。
板书课题:分数的意义
二、导学导探,建构分数
1、整体感知
①请同学们思考,你们能结合下面的图形说说1/4的含义吗?
②请看第5副图,老师有点纳闷,2个面包和1/4是什么关系?
③这5个图形的形状、大小、数量都不一样,为什么都能用1/4来表示呢?
师总结:上面的这些物体都可以看做一个整体,都平均分成了4份,都取出了其中的一份,所以都可以用1/4来表示。
④一个整体还可以用什么来表示呢?下面老师告诉同学们一个知识点,谁来念一遍:一个整体可以用自然数1来表示,通常把它叫做单位“1”。
强调:一个圆形的面积、长方形的面积、香蕉的个数、一条线段、8个面包都可以用单位“1”来表示。这里的1不仅可以表示一个物体,还可以表示多个物体,它的含义非常特殊,所以1的上面需加上双引号。
谁来举一个单位“1”的例子。
改写板书:1/4的意义该怎么修改呢:把一个整体改为单位“1”,即把单位“1”平均分成4份,表示这样一份的数就是1/4。
2、抽象概括
①1/4的意义明白了,谁来说说5/7的意义(把4和1擦掉)
②师:出示5/(),让学生说把单位“1”平均分成……(这里有几种不同的声音出现),表示这样5份的数。
③师:出示()/(),谁又能说说它表示的意义。
出示自学提纲
板书:5/6分数单位1/6
三、拓展延伸,加深理解
今天。我们学习了分数的意义,你们学得怎么样,老师要检验一下:
1、图中的涂色部分表示几分之几?(糖块)(挑几个说分数的意义和分数单位)
2、3、书上的题
4、判断
5、写出合适的分数:
四、自我小结,升华认识
师:今天我们进一步学习了分数的意义,分数的意义是:把单位“1”平均分成若干份,表示这样的一份或者几份的数,叫做分数。马上下课了,老师想说一句含有一个分数的话:今天我们班有3/4的学生发言积极,有4/5的学生语言流畅,有5/6的学生思维敏捷,如果老师有机会再来上课的话,老师希望100%的学生都是好样的。中午回家给爸爸妈妈说一句话,让这一句话里含有一个分数。
比的意义教案 篇二
教材简析:
这部分内容主要教学比的意义、比与分数、除法的关系。例1、例2教学认识比的意义。认识比时,主要利用学生对两个数量之间关系的已有认识,先引导学生分别认识同类量的比(例1)和不同类量的比(例2),并逐步抽象出比的意义。进而引导学生根据比的意义以及分数与除法的关系,主动探索比与分数、除法的关系,自我完善认知结构。在例1、例2随后的“试一试”、“练一练”中,教材都尽可能为学生提供自主探索和尝试的机会,尝试通过学生的独立思考进一步感受比的。意义,并主动探索比与分数、除法的关系。
练习十三中的5个练习题分别从不同的角度对比的意义、比值以及相关知识间的联系进行了合理操练,且形式多样,目的明确。
可以看出教材这样有序的编排、呈现内容,不仅有利于学生在新旧知识之间建立起合适的联系,而且有利于学生主动参与探索活动,并在活动中全面准确的理解比的意义,构建起对比、除法、分数三者之间完整的认知结构。
教学目标:
1、使学生在具体情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。
2、使学生经历探索比与分数、除法关系的过程,初步理解比与分数、除法的关系,会把比改写成分数的形式。
3、使学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,体验数学学习的乐趣。
重点:理解比的意义
难点:理解比与分数、除法的关系
教学准备:多媒体课件、挂图、小黑板
教学过程:
一、谈话导入
1、谈话:今天这节课,老师要和同学们一起学习“比”的知识。(板书:比)关于比,你想了解一些什么?(学生可能回答:什么是比?学了“比”有什么用?数学上的“比”与生活中的“比”一样吗?……)
2、教师根据学生的回答进行引发:对,生活中也有“比”,比如一场足球赛的比分是2∶0,它与数学上的“比”一样吗?老师希望通过今天的学习,我们自己来找到这些问题的答案好吗?
设计意图:
开门见山式的揭示课题显的简洁明确,导入通过学生对学习内容的相关议论,引导学生产生了解比、认识比的心理需求,为本课的学习对象创设一个良好的研究氛围。
比的意义教案 篇三
教学目标:
1、理解比的意义,会读、写比;认识比的各部分名称;掌握求比值的方法,能准确地求出比值。
2、理解比、分数、除法之间的关系,通过观察,让学生懂得事物之间是相互联系的。
教学重点和难点:
掌握比的意义,建立比的概念,能准确地求出比值。
教学过程:
老师:在日常生活中,我们常常把两个数量进行比较,通常怎么比较?(比较两个数量之间相差关系用减法,比较两个数量之间的倍数关系用除法。)
导入:今天我们借助于除法来学习两个数量进行比较的另一种表示方法。
(一)准备题
(事先板书)口头列式解答。
1、一面红旗,长3分米,宽2分米,长是宽的几倍?宽是长的几分之几?
2、一辆汽车,2小时行驶100千米,每小时行驶多少千米?
板书:1002=50(千米)
师:观察上面的两道题,它们有什么共同特点?(都用除法)
(二)讲授新课:比的意义
1、观察练习1。
问:32表示什么?(3是2的几倍。)
谁和谁比?(长和宽比。)
23表示什么?(2是3的几分之几。)
谁和谁比?(宽和长比。)
师:无论是长除以宽,还是宽除以长,比较结果都表示长和宽之间的倍数关系,这时也可以把两个数量之间的关系说成是两个数量的比。
板书:长和宽的比是3比2。宽和长的比是2比3。
也就是说,32可以说成3比2,23也可以说成2比3。
提问:3分米、2分米都表示什么?(长度)
师小结:3分米、2分米都表示长度,它们是同一种量,我们就说这两个数量的比是同类量的比。
2、观察练习2。
提问:求的是什么?(速度)谁和谁进行比较?(路程和时间)谁除以谁?
师:我们也可以用比来表示路程和时间的关系。(放手让学生讨论)路程除以时间可以说成什么?(可以说成路程和时间的比,即100∶2可以说成100比2。)
路程和时间是同一类量吗?(不是)不同类量比的结果是什么?(产生一个新的。量:速度。)
3、归纳总结。
师:从上面例子可以看出,表示两个数之间的关系可以用什么方法?(用红笔画线,标上除法。)当用除法表示两个数量关系时,我们又可以说成什么?(用红笔画线,标上比。)什么叫做比?(学生讨论后,老师归纳并板书。)
板书:两个数相除又叫做这两个数的比。
4、练一练。(投影)
(1)书法小组有男生6人,女生5人,男女生人数的比是( )比( ),女生人数和男生人数的比是( )比( )。
(2)小红3小时走11千米,小红所行路程和时间的比是( )比( ),这个比表示( )。
提问:写比时要注意什么?(要看清谁比谁,按顺序写。)不按顺序写会出现什么结果?(改变比的意义。)
(三)比的写法和各部分名称
师:两个数相除又叫做两个数的比,说法变了,各部分名称和表现形式都应发生变化。(可让学生看书自学,老师根据学生的回答板书。)
3比2记作3∶2
2比3记作2∶3
100比5记作100∶5
∶叫做比号,读做比。比号前面的数叫做比的前项,比号后面的数叫做比的后项。用比的前项除以比的后项,所得的商叫做比值。
提问:比的前后 chayi5.com 两项能随便交换位置吗?为什么?(交换了位置,比的意义就变了。)
比值可以是哪些数?(分数、小数、整数)
练习:你会求比值吗?(板书)
100∶2=1002=50
(老师说明:求比值和解答应用题不同,不写单位名称。)
(四)比、除法、分数之间的关系
师:两个数相除又叫做两个数的比,比和除法到底有什么关系?
学生讨论,老师出示投影。
生:比的前项相当于除法中的被除数,比号相当于除号,比的后项相当于除数,比值相当于商。
师:为什么要用相当于这个词?因为它们之间有联系还有区别,除法是一种运算,比则表示两个数之间相除的关系,所以比同除法的关系只能是相当于的关系。
提问:在除法中,为了使除法有意义,提出了什么要求?(除数不能是0。)那比的后项可以是零吗?(不可以)
师:比还有一种表示方法,就是写成分数形式。(板书)3∶2可写成
成比值又可以看成比,做比时读作2比3,做比值读作三分之二。其它几个比做比值时必须化成带分数或整数。
提问:比和分数有什么关系?
生:比的前项相当于分子,比号相当于分数线,比的后项相当于分母,比值相当于分数值。(老师按学生回答,填写投影片)
师:分数是一个数,所以比同分数也是相当于的关系。
(五)反馈练习
1、第56页的做一做,学生动笔在本上做。
2、(投影)把下面的比写成分数形式。
3、选择答案。
航空模型小组8个人共做了27个航空模型,这个小组所做的模型总数和人数的比是
4、判断正误:(举反馈牌)
(1)大卡车载重量是5吨,小卡车载重量是2吨,大小卡车载重量的
(2)机床上有一个齿轮,20秒转49周,这个齿轮转动的周数和时间的比是20∶49。
师:写比要注意比的顺序,前、后项不能颠倒。
(六)课堂总结
今天我们学习的是书上第55页至56页的知识。(让学生打开书看)你都学会了哪些知识?
(七)布置作业
(略)
《比的意义》教案 篇四
一、教学目的
1、使学生了解昼夜交替的原因及其意义,地方时、区时的应用,地转偏向力的作用规律及其意义。
2、学生了解昼夜长短、正午太阳高度角变化的原因及其规律,四季及五带的划分。
3、通过让学生分析原因、总结规律、验证结论等培养各种能力。
4、通过对地球运动的主要地理意义的学习,使学生受到辩证唯物主义的教育。
二、教材分析
本两节教材内容阐述了地球运动的主要地理意义。与老教材相比,地球自转的地理意义被表述为地球运动的地理意义(一);地球公转的地理意义被表述为地球运动的地理意义(二)。这样做更具科学性,因为无论是昼夜交替或是正午太阳高度的季节变化等等,都不是单纯的自转或公转的结果,而是地球自转和公转的联合结果。
地球运动的地理意义(一),讲了三个意义:昼夜交替、地方时、沿地表水平运动物体的偏移。与老教材相比,少了“对地球形状的影响”。这反映出新教材重视“实用性”的意图。因为与前三个意义比较,后者的实用性明显偏低。
在讲述“昼夜交替”时,新教材增补了用太阳高度来描述各地的昼夜状态,使“昼夜”与“太阳高度”两个概念联系在一起,既有利于昼夜状态的说明,也有利于学生对太阳高度这个抽象概念的理解。
对于“时间”,新教材增添了不少内容,充分体现了“应用性”特点。教材首先明确了地方时的概念,接着指出使用地方时的缺陷,从而自然引出“区时”,最后介绍了各国的一些特别计时的方法,使学生全面了解“区时”的使用,以适应社会。
而对“沿地表水平运动物体的偏移”,则删除了理论分析,只介绍偏转规律,这完全符合高一学生的认知规律。对地转偏向力的作用,避免了泛泛而谈,增加了“长江三角洲发育过程”的实例,更加贴近生活。
地球运动的地理意义(二),从大的方面看,增加了“五带的划分”,这是地球表面地域分异规律的基础,内容非常重要,且放在这里也比较自然。
关于“昼夜长短的变化”,新老教材无大的差别。主要阐述了各地昼夜长短随季节的变化规律。
正午太阳高度的变化,只介绍了正午太阳高度随纬度和季节的变化规律,并以夏至日、冬至日、春秋分三个特例进行分析。删除了较难,也较繁琐的正午太阳高度角的计算。
四季的划分,主要介绍了我国及欧美国家天文四季的划分方法。教材新增了“二十四节气”内容,因为这不仅是我国科学史上的一个辉煌成就,而且对我国人民的生活和生产具有重要作用。
三、教学过程:
1、对昼夜的产生,应先演示,可以用地球仪加发亮的灯泡(或手电筒)、多媒体动画、挂图、板图等。再设问:为什么会产生昼夜?逐步引导学生得出:地球是个不发光、不透明的球体,在某一时刻,太阳只能照亮半个地球,亮的半球为昼,暗的半球为夜。那么昼与夜之间的界线叫什么呢?引出晨昏线概念。
2、晨昏线概念较抽象,应以教师讲解为主,且配上不同视图。首先明确概念:昼、夜半球的分界线即为晨昏线,它是晨线与昏线的合称。晨线的西侧为夜,东侧为昼;昏线的西侧为昼,东侧为夜。如下图:
AB为晨线,昏线在后面; CD为昏线,DE为晨线; FS为晨线,SG为昏线。
最后强调,晨线与昏线的两端一定在极圈内。那么,晨昏线是固定的还是移动的呢?让学生思考,从而转入昼夜交替的学习。
3、昼夜交替的原因是什么?学生易得出结论:地球的自转。可进一步深入,公转也会产生昼夜交替(用地球仪或多媒体演示),再说昼夜交替的周期是太阳日,所以昼夜交替的原因应表述为由于地球的运动。那么什么是昼呢?引导学生得出:理论上能看见太阳。能否看见太阳怎样表述呢?引出“太阳高度角”概念。
4、对太阳高度角的概念、太阳高度的日变化、正午太阳高度,应用图示法(有条件的用多媒体动画)讲解。首先要讲清太阳高度角的概念,如下图。
并强调太阳高度角总是小于等于90°,这样就能了解正午后的太阳高度角了。正午太阳高度角(正午时过某地的经线方向的切线与太阳光线的夹角)是个非常抽象的概念,学生难以理解,必须结合地球仪、多媒体动画、示意图等慢慢讲解,切不可操之过急。弄清楚太阳高度概念后,就可让学生思考,怎样把太阳高度与昼夜联系起来,逐步引导学生得出:太阳高度大于0为昼,小于0为夜。
5、昼夜交替的周期,只介绍结果就可以了,不必究其原因。太阳日的意义,可让学生通过阅读课文、思考后回答。
6、为使学生容易理解地方时的概念,可把定义改为:把某地太阳到达最高位置的时刻,定为正午12点,这样的时间叫地方时。再让学生议论,使用地方时有什么优缺点?(对当地居民来说,便于起居作息,对于交往来说,非常不便),从而引入区时讲解。
7、“区时”学生在初中时学过,但已忘得差不多了,应重新学习。对时区的划分,最好用一张北半球的极地投影图说明。如下图:
从应用性看,重点应放在区时的换算上。公式及注意事项如下:
某地区时=已知区时±1小时×相隔时区数
(相隔时区数:同在东时区或西时区的,大减小;分别在不同时区的,相加。即同减异加。±:在已知时区东面的,取+;在已知时区西面的,取—。即东加西减。计算时,一般把东十二区当作最东,西十二区当作最西。)
关于有些国家使用区时中的一些特例,应作仔细介绍,以使学生能全面地了解区时的使用。
8、对“地表水平运动物体的偏移”,可先让学生在教师指导下演示。方法是:画南、北半球极地投影图各一张,用铅笔点住极点,顺着经线往图外某点画直线,比较地球转与不转时的铅笔轨迹。再让学生总结偏转规律。对长江三角洲的形成,可师生共同讨论完成。首先让学生思考,泥沙在河口为什么会沉积?(落差变小、河道变宽、海水的顶托等,造成流速降低),接着设问:为什么会主要形成在北岸,而不是在南岸?(地转偏向力的作用)。
9、让学生讨论,随着季节的变化或同一季节的不同纬度,温度状况有否变化?(回答是肯定的')然后说明:为什么有这种变化呢?主要是各地昼夜长短与正午太阳高度的不同。可把昼夜长短比作水阀出水时间长短,把正午太阳高度比作水阀大小,然后用出水量说明太阳辐射量。
10、对“昼夜长短的变化”,要先讲清昼弧与夜弧概念。晨昏线把纬线圈分割为两部分,一部分在昼半球,称为昼弧;另一部分在夜半球,称为夜弧。昼、夜弧的长短可表示昼、夜的长短。再让学生阅读课本的三张插图,分别说明冬至日、夏至日、春秋分时昼夜长短随纬度的变化规律。最后总结一般规律:在太阳直射的半球,昼长夜短,且纬度越高,昼越长,极圈内有极昼现象;太阳不直射的半球,昼短夜长,且纬度越高,夜越长,极圈内有极夜现象。在赤道上,终年是昼夜等长。
11、对“正午太阳高度的变化”,最好也让学生通过读课本的三张插图,说明冬至日、夏至日、春秋分时正午太阳高度随纬度的变化规律,然后总结一般规律:
在太阳直射点上,太阳高度最大(为900)。离太阳直射点越近,正午太阳高度越大;离太阳直射点越远,正午太阳高度越小。
12、设问:同一纬度地区,昼夜长短与正午太阳高度随季节有否变化?学生应能答出:有变化且呈周期性。教师即可指出,这就是四季变化原因。转入“四季的划分”学习。
13、让学生阅读“二十四节气与四季(北半球)”图,设问:我国传统的四季是怎样划分的?(根据“四立”划分)设问:夏至是夏季的中点,是不是一年中最热的时候?冬至是冬季的中点,是不是一年中最冷的时候?引导学生得出结论:我国传统四季的划分,只重视接受太阳辐射能的多少,与天文含义相符。但同时指出我国的二十四节气,也考虑到了气候因素。例如“大暑”,在夏至后一个月,在现行阳历中大约是7月23日到8月8日,同我国传统的三伏大体相同。“大寒”在冬至后一个月,约为1月21日至2月4日,同我国传统的三九相差不多。惊蛰原来叫雷惊蛰,意即春雷惊醒冬眠的蛰虫。清明原来叫清明风至,意即东南风开始盛行。
14、设问:欧美国家传统四季是怎样划分的?(学生读图后回答:根据“二分”、“二至”划分)与我国传统四季在时间上有何差异?(推迟一个半月)那么它主要考虑了太阳辐射还是气候?引导学生逐步得出:气候。
15、让学生阅读课文,回答:现在北温带许多国家是怎样划分四季的?这样的划分主要是考虑天文还是气候?(把冬、夏季与我国三伏、三九、四九对照),最后得出结论:为使季节划分与气候相结合。
16、让学生阅读课文,以我国二十四节气为例,说明季节划分的意义。
17、设问:同一季节,昼夜长短与正午太阳高度随纬度有否变化?学生应能答出:有变化,且呈规律性。教师即可指出,既然有变化,就有热量差异,进入“五带的划分”学习。
18、让学生阅读“五带的划分”图,说明五带划分的界线和范围,五带划分的标准(有无太阳直射,有无极昼、极夜),五带的划分主要考虑什么?(理论上的太阳光照情况)对五带划分的作用,应由教师分析:它是科学家们进一步研究地球表面地域分异规律的基础。
四、讲授提纲(略)
《比的意义》教学设计 篇五
教学目标:
1、理解比的意义,掌握比的读法和写法,认识比的各部分名称。
2、掌握求比值的方法,并能正确求出比的比值。
3、培养学生抽象、概括能力。
教学重点:
理解比的意义,掌握求比值的方法。
教学难点:
理解比的意义,建立比的概念
教学过程:
活动一:
同学们,在每个星期一的早晨我们学校都会举行一种什么仪式?我们学校为什么要经常举行这种升旗活动呢?其实在我们的国旗里面还隐藏着许多有趣的数学问题呢?今天,我们就一起去探究一下。
课件出示问题:一面红旗,长3分米,宽2分米,谁能用算式来表示长和宽的关系?
在学生的回答中,老师选取两个答案:3÷2表示长是宽的几倍?和2÷3表示宽是长的几分之几?告诉学生这种关系除了用除法算式表示外,还可以用另外一种方式来表达,那就是——比。引出本节课内容“比的意义”。
活动二:
(一)探究同类量的比;外,还可以表示长和宽的比为3比2。让学生依次说出2÷3还可以表示什么意思?
同学们,刚才我们都是把长和宽进行了比较,为什么一个是3比2,一个是2比3,让学生说说从中有什么收获?
让学生举出生活中这样的例子。
(二)探究非同类量的比
课件出示书中的第二个红点问题。
让学生用算式表示如何求速度?通过公式来列算式,引导学生写出路程和时间的比是多少?
再让学生举出生活中这样地例子。
活动三:
仔细观察上面的例子,对两个数量进行比较,既可以用除法,又可以用比的方法。那什么叫做比呢?(学生讨论交流)
通过刚才的学习,我们理解了比的意义,在课本的78~79页还涉及到一些关于“比”的其他知识,你们想自己研究、探索吗?老师有个小小的要求,请大家对照老师所给的问题,以四人小组为单位进行自学,可以在小组里讨论,然后汇报交流。
课件出示问题:
⑴、比的读、写法?比都有哪些表示形式?
⑵、比的各部分名称?如何求比值?
⑶、比和除法、分数有哪些联系?
⑷、比的后项能不能是0?为什么?
引导学生起来交流,在学生交流的基础上有针对性的板书。
活动四:
1、填一填。
⑴、把2克盐溶解在100克水中,盐和水的比的()。盐和盐水的比是()。
⑵、一辆汽车来运货,一共运了5次,共运了20吨,写出运的吨数和次数比是(),比值是()。
活动五:
学生谈收获。
引导过程 篇六
㈠引导探索,使学生由比较两个同类量之间的倍数关系,引出用比表示的方法。
谈话:同学们,有谁知道,今年的雅典奥运会上,中国代表团共获得多少枚金牌?中华人民共和国的国歌在雅典奥运会上多少次庄严奏起,中华人民共和国的国旗多少次在雅典上空率先升起。“五星红旗啊,我们为你自豪”。
同学们,你知道国旗的制作标准吗?下面我们就来计算一下。
投影:这面国旗,长是3分米,宽是2分米。
⒈引导再学。出示初学思考题:
长是宽的几倍,还可以把长和宽的关系说成什么?
宽是长的几分之几,还可以把宽和长的关系说成什么?
⒉讨论回答思考题
师:长是宽的几倍,还可以把长和宽的关系说成什么?
生:长是宽的3/2倍,我们还可以把长和宽的关系说成-----长和宽的比是3比2。
板书 3÷2=3/2 或 3比2
师:宽是长的几分之几,还可以把宽和长的关系说成什么?
生:宽是长的2/3,我们还可以宽和长的关系说成-----宽和长的比是2比3。
板书 2÷3=2/3 或 2比3
师:由上可知,我们还可以用比来表示长与宽之间的倍数关系。
㈡再次探索用比表示两个不同类量之间的除法关系。
投影:一辆汽车,2小时行驶了100千米。
出示初学思考题,引导再学。
① 题目中有哪几个量?可以求出什么问题?怎样求?
② 这两个量间的关系用比怎样表示?
讨论思考题:
师:路程和时间的关系用比来表示怎么说?
生:汽车所行路程和时间的比是100比2。
板书 100÷2=50 或 路程和时间的比是100比2
师:那么汽车所行时间和路程的关系是什么?能用比表示吗?
引导学生弄清谁与谁比,比的结果、意义不同。
㈢引导归纳比的意义,理解掌握比和分数、除法的关系
学生先阅读课本第62页的内容,再学思考题。
思考题:①比是表示几个量之间的什么关系?什么叫做比?
②比的符号是什么?比的每个部分的名称是什么?
③比和除法有怎样的联系和区别?比和分数呢?
⑴回答思考题①,师即时板书。
生:比是表示两个量之间的相除关系,因此两个数相除又叫做两个数的比。
⑵回答思考题②:
师:除法的运算符号是除号,表示比的符号是什么呢?还有其他的表示方法吗?
生:比的符号是比号,写作“﹕”要写在两个数的'中间。比号前面的数叫比的前项,比号后面的数叫比的后项,比的前项除以后项所得的商叫做比值。
3 比 2记作3﹕2 或3 / 2
板书 3 ﹕ 2 = 3 ÷ 2 = 1.5
前项 比号 后项 比值
师:3/2是比的另一种分数形式的写法,仍读作3比2,不能读作二分之三。
⑶回答思考题③:
生答,师填表
除法
被除数
除号
除数
商
一种运算
比
前项
比号
后项
比值
两个数的关系
分数
分子
分数线
分母
分数值
一种数
《比的意义》教学设计 篇七
教学目标:
1、理解比的意义,掌握比的读法和写法,认识比的各部分名称。
2、掌握求比值的方法,并能正确求出比的比值。
3、培养学生抽象、概括能力。
教学重点:
理解比的意义,掌握求比值的方法。
教学难点:
理解比的意义,建立比的概 念
教学过程:
活动一:
同学们,在每个星期一的早晨我们学校都会举行一种什么仪式?我们学校为什么要经常举行这种升旗活动呢?其实在我们的国旗里面还隐藏着许多有趣的数学问题呢?今天,我们就一起去探究一下。
课件出示问题:一面红旗,长3分米,宽2分米,谁能用算式来表示长和宽的关系?
在学生的回答中,老师选取两个答案:3÷2表示长是宽的几倍?和2÷3表示宽是长的几分之几?告诉学生这种关系除了用除法算式表示外,还可以用另外一种方式来表达,那就是——比。引出本节课内容“比的意义”。
活动二;
(一)探究同类量的比;外,还可以表示长和宽的比为3比2。让学生依次说出2÷3还可以表示什么意思?
同学们,刚才我们都是把长和宽进行了比较,为什么一个是3比2,一个是2比3,让学生说说从中有什么收获?
让学生举出生活中这样的例子。
(二)探究非同类量的比
课件出示书中的第二个红点问题。
让学生用算式表示如何求速度?通过公式来列算式,引导学生写出路程和时间的比是多少?
再让学生举出生活中这样地例子。
活动三:
仔细观察上面的例子,对两个数量进行比较,既可以用除法,又可以用比的方法。那什么叫做比呢?(学生讨论交流)
通过刚才的学习,我们理解了比的意义,在课本的78~79页还涉及到一些关于“比”的其他知识,你们想自己研究、探索吗?老师有个小小的要求,请大家对照老师所给的问题,以四人小组为单位进行自学,可以在小组里讨论,然后汇报交流。
课件出示问题:
⑴、比的读、写法?比都有哪些表示形式?
⑵、比的各部分名称?如何求比值?
⑶、比和除法、分数有哪些联系?
⑷、比的后项能不能是0?为什么?
引导学生起来交流,在学生交流的基础上有针对性的板书。
活动四:
1、填一填。
⑴、把2克盐溶解在100克水中,盐和水的比的( )。盐和盐水的比是( )。
⑵、一辆汽车来运货,一共运了5次,共运了20吨,写出运的吨数和次数比是( ),比值是( )。
活动五;
学生谈收获。
《比的意义》教学设计 篇八
教学目标
1、知识目标:在自主探究的过程中,理解与掌握方程的意义,弄清方程和等式两个概念的关系。
2、能力目标:培养学生认真观察、思考分析问题的能力。渗透数学来源于实际生活的辩证唯物主义思想。
3、情感目标:通过自主探究,合作交流等教学活动,激发学生兴趣,培养合作意识。
教学重点
理解和掌握方程的意义。
教学难点
弄清方程和等式的异同
教具准备
多媒体课件、作业纸
教学设计
一、情景导入
师生谈话:同学们,你们玩过跷跷板吗?
(课件出示:在美丽的大森林中,山羊、小猴、小狗、小兔在做游戏)
让学生猜测如果让山羊和小猴玩跷跷板,会出现什么结果。
(课件演示验证学生的回答,出现跷跷板不平衡的画面)
提问:怎样才能让小动物开心地玩起来呢?
学生:让小狗、小兔加入到小猴那边。
(课件演示:跷跷板逐渐平衡。并能一上一下动起来。)
教师小结:当两边重量差不多时,跷跷板基本保持平衡,就能很好地玩游戏了。
[评析]:动物是学生们喜欢的形象,以故事情境导入,创设生动有趣的情景,借助多媒体课件演示的优势,使学生初步感受平衡与不平衡的现象。从而紧紧抓住学生的“心”。
二、探究新知
师:在我们的数学学习中,还有一种更为科学的平衡工具,猜猜是什么?
1、直观演示,激发兴趣
课件出示一架天平,教师向学生介绍它的工作原理。
让学生仔细观察,现在天平处于什么状态。
提问:能用一个式子表示这种平衡状态吗?
根据学生的回答,教师板书:50+50=100
2、继续实验,自主发现
1)分小组实验,让学生自己动手做一做(每个小组发一些有重量的砝码和学生自己手中的书本等)
要求:三组设计平衡状态,三组设计不平衡状态。并据此列式。
2)学生实验,教师巡回作指导。
3)学生交流汇报,教师板书:
平衡状态的:
50+10=60
50=20+书……
不平衡状态的:
50+30>两本书
50<三本书……
4)学生动手把不平衡状态的天平调平衡并列式
50+30=四本书
50+10=三本书
5)师生一起把书用字母代替:
50+10=60,
50=20+X,
50+30>2X,
50<3X
50+30=4X
50+10=3X
3、整理分类,认识方程。
1)学生把上没面的式子进行分类
2)让学生明确:像这些含有等号的式子都是等式。(板书:等式,标出大集合圈)
观察右边三个等式与左边一个等式有什么区别?
学生很快明确:右边的等式里都含有未知数。(在等式前面板书:含有未知数)
教师总结:我们把右边这三个含有未知数的等式称为方程。
3)学生齐读方程的意义,同桌互相说出一个方程。
[评析]:这部分教学设计为学生提供了充分的从事数学活动的机会,让学生动手去操作,去合作。让学生通过观察、思考、尝试分类、交流,积极主动的参与到数学活动中来,并初步渗透了数学中的集合思想。
三、巩固拓展
课件出示两个小动物争吵的画面
小狗:我知道了,所有的方程一定是等式。
小兔:不对不对,应该说所有的等式一定都是方程。
判断谁说的对,并叙述理由。
四、总结
学生阅读数学小知识“你知道吗?”
五、作业
练习十一的1题
教学反思
1、利用兴趣调动学生的积极性,让学生主动参与。
生活是兴趣的源泉,体验是主动参与的动力。通过直观演示、学生实验,调动了学生的积极性和参与的热情,每一个学生都积极的加入了学习的热流中来。教学当中始终注意激发学生的学习兴趣,增强学生学习的信心。给学生提供了充分的归纳、类比、猜测、交流、反思的时间和空间,使学生的思维能力得到了进一步的提高。
2、关注情景教学
在本节课中,将枯燥的方程概念融于浅显生动的情景中。导入利用小动物创设了生动有趣的教学背景,整个教学过程中,学生始终对天平的所有情景保持着浓厚的兴趣。通过天平称重的实验,让学生尝试用数学知识来描述实验现象,使学生获得了等式和不等式的知识。
比的意义教案 篇九
教学内容:
书第68-69页例1、例2,试一试、练一练和练习十三的1―5题。
教学目标:
1、使学生在具体情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。
2、使学生经历探索比与分数、除法关系的过程,初步理解比与分数、除法的关系,会把比改写成分数的形式。
3、使学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,体验数学学习的乐趣。
教学重点:
理解比的意义。
教学难点:
理解比与分数、除法的关系。
教学准备:
多媒体课件。
教学过程:
一、谈话导入
1、谈话:今天这节课,老师要和同学们一起学习“比”的知识。(板书:比)关于比,你想了解一些什么?(学生可能回答:什么是比?学了“比”有什么用?数学上的“比”与生活中的“比”一样吗?……)
2、教师根据学生的回答进行引发:对,生活中也有“比”,比如一场足球赛的比分是2∶0,它与数学上的“比”一样吗?老师希望通过今天的学习,我们自己来找到这些问题的答案好吗?
二、教学例1
(一)、呈现例1:
1、利用旧知进行比较:
(1)图中提供了2个数量:2杯果汁和3杯牛奶。根据这两个数量,我们怎样来对果汁和牛奶的杯数进行比较?(根据学生回答,教师整理板书:)
相差关系{牛奶比果汁多1杯倍数关系{果汁的杯数相当于牛奶的2/3
果汁比牛奶少1杯牛奶的杯数相当于果汁的3/2
(2)小结:同学们,我们已经知道两个数量相比较,既可以用减法比较两个数量之间相差多少,也可以用除法或分数来表示两者之间的倍数关系。今天我们认识的比就是专门对这后一种关系进行的研究。
2、“比”的教学:
(1)(指板书:)“果汁的杯数相当于牛奶的2/3”。我们还可以说成“果汁与牛奶杯数的比是2比3(出示)”。想一想,“牛奶的杯数相当于果汁的3/2”。还可以怎样说?(出示:牛奶与果汁杯数的比是3比2。)
3、“比”的读写:
(1)师介绍:2比3怎么写呢?我们一起来看:2比3记作2∶3(板书:2∶3,先写2,再在中间写上两个小圆点,读作“比”,注意与语文中的“冒号”不同,最后写3。一起来写一写,读一读。)
(2)指导学生写:3比2怎么写呢?谁来写一写?
(3)介绍名称:刚才我们写在中间的两个小圆点(∶)是比号(板书:比号),比号前面的数叫做比的前项,比号后面的数叫做比的后项。(板书:前项
后项)
(4)谁来说一说:2∶3这个比中,比的前项是几?比的后项是几?在3∶2这个比中,2是比的什么?3是比的什么?
4、比是有序概念
(1)同学们看一看,刚才的比的前项是2,这儿的2怎么又是比的后项了呢?
(2)对!颠倒两个数量的位置,就会得出另一个比,它的意义也就不同。因此大家在叙述的时候,一定要说清楚是哪个数量与哪个数量在比,不可颠倒顺序。
(二)、完成试一试
(1)指图中的1∶4,问:这里的白色部分和蓝色部分分别表示什么?你知道1∶4表示什么吗?
(2)把每种溶液里的洗洁液看作1份,水分别可以看作几份?
(3)还可以怎样表示每种溶液里洗洁液和水体积之间的关系?(引导学生理解:比如这个1:4,表示1份洗洁液要加4份水,也就是说水的体积是洗洁液的4倍,洗洁液的体积是水的1/4。)
三、教学例2
(一)通过刚才的学习,我们对比已经有了一个初步的认识,下面我们再来看一个例子。
1、想一想,我们怎样求两人的速度?
2、2、学生计算答案,汇报填表。
3、明确:因为速度=路程÷时间,速度实际上表示了路程与时间的关系。我们也可以用比来表示路程与时间的关系。(出示:小军走的路程与时间的比是比是900∶15。)900∶15表示什么呢?(路程÷时间。)
4、你能用比来表示小伟走的路程与时间的比吗?(出示:小伟走的路程与时间的比是比是900∶20)
(二)、理解比的意义
1、刚才我们已经得出了不少的比,仔细观察一下例2中的比:900比15,900比20,以及例1中的2比3,3比2等等,你觉得比与什么有关?两个数的比表示什么呢?(板书:两个数的比两个数相除)
2、教师根据学生回答再引导:例1中的比表示两个数的倍数关系,例2中的比表示路程÷时间,不管是例1、例2还是练习中的比都表示两个数相除。所以两个数的比到底表示两个数的什么关系?(板书:一种相除关系)
(三)、认识“比值”、及与“比”的区别:
1、在900∶15这个比中,比的前项是几?后项是几?比的前项除以后项的商是几?我们把比的前项除以后项所得的商叫做比值。算算900∶15这个比的比值是几?
2、想一想,900∶20这个比的比值是多少?这两个比值60、45也就表示什么?
3、你能说出例1中的各个比的比值分别是多少吗?
4、讨论:同学们觉得比与比值的区别在哪里?
(比表示两个数相除的`一种关系,由前项、比号、后项组成。比值表示比的前项除以后项所得的商,比值是一个数,可以是分数、小数或整数。)
(四)、“试一试”
1、完成“试一试”:(学生独立完成,指名板演)
2、教师介绍:根据分数和除法的关系,两个数的比也可以写成分数形式。例如,2∶3除了写成这种形式以外,也可以写成分数形式的比:3/2。(板书:3/2)注意这时应把它看成是一个比,而不是分数,所以先写比的前项,再写横线表示比,最后写后项,仍应读作3比2。)
(五)、比、除法和分数的关系
1、让学生通过观察、比较、交流得到比与分数、除法的关系:比的前项、后项、比号、比值分别相当于除法算式或分数中的什么吗?比的后项可以是0吗?(根据学生的汇报填表)
相互关系区别
比前项比号(:)后项比值
除法
分数
2、比的后项为什么不能是0?
四、巩固练习
1、完成“练一练”的1、2、3小题。
2、判断题。
(1)3/4只能读作四分之三。()
(2)比的后项不能是零。()
(3)可可的身高是1米,她爸爸的身高是178厘米,可可和她爸爸身高的比是1∶178。()
3、完成练习十三的第3、4题。
4、糖水的甜度
(1)(出示:两杯糖水,并标出糖与水的质量的比,第一杯1∶20,第二杯1∶25)
你知道哪一杯水更甜吗?为什么?
(2)(出示第三杯糖水,标出糖4克,水100克。)
你知道这杯糖水和刚才的哪一杯一样甜?先想一想,再与同桌交流,说说你是怎样比较的?
(3)根据第一杯糖和水质量的比是1∶20,你能说出第一杯糖与糖水质量的比吗?
5、知识介绍:
同学们,其实比在我们生活中的应用是非常广泛的。你听说过著名的“黄金比吗?”
五、总结:
今天我们学习了什么?你们有什么收获吗?还有什么问题吗?
六、布置作业:
P72练习十三的1、2、3、5
板书设计
相差关系{牛奶比果汁多1杯倍数关系{果汁的杯数相当于牛奶的2/3
果汁比牛奶少1杯牛奶的杯数相当于果汁的3/2
2比3记作2∶3分数形式
以上就是差异网为大家带来的9篇《比的意义教案》,能够给予您一定的参考与启发,是差异网的价值所在。
推荐作文:
- ·混凝土施工组织方案(精选7篇)
- ·《猎人海力布》-小学生记叙文400字
- ·最美的善举-记事作文500字
- ·酒桶的歌声-五年级记叙文800字
- ·教师节-专题作文700字
- ·心灵深处的一抹阳光-初一记叙文650字
- ·拔河大战-记事作文500字
- ·2022年度优秀幼儿园食堂自查报告(精彩5篇)
- ·会计专业毕业实习总结【最新4篇】
- ·企业年会策划书(优秀9篇)
- ·陪伴-记叙文800字
- ·毕业生实习总结优秀9篇
- ·公交车上的难题-记叙文作文550字
- ·冰趣-初中记叙文1000字
- ·优秀家长发言稿优秀4篇
- ·一件小事-记叙作文500字
- ·那次玩得真高兴-记叙文作文350字
- ·赖床风波-第一次作文300字
- ·我会扔掉身份-《喂出来》续写作文1500字
- ·《巨人的花园》-小学生续写作文350字
- ·小升初自我介绍(6篇)
- ·防控工作应急预案(通用5篇)
- ·书香伴我成长-抒情作文800字
- ·难忘的时光-小学记叙文300字
- ·我的春节-高三记叙文1000字
- ·开学第一课-记叙文900字
- ·三国演义-我推荐的一本书500字
- ·忆童年-记叙作文400字
- ·少年,请珍惜时间-记叙文450字
- ·幼儿教师教育教学工作总结精选6篇