乘法交换律教学设计(优秀3篇)

时间:2023-07-04 16:56:34 | 来源:啦啦作文网

作为一名教师,总归要编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。那么写教学设计需要注意哪些问题呢?差异网的小编精心为您带来了3篇《乘法交换律教学设计》,希望朋友们参阅后能够文思泉涌。

四年级数学乘法交换律教案 篇一

教学内容:

九年义务教育苏教版小学数学第七册第81-83页例1、例2和练一练,练习十七第1-4题。

教学要求:

1、让学生经历乘法交换律和乘法结合律的探索过程,理解并掌握规律,能用字母表示规律。

2、培养学生观察、比较、分析、综合和归纳、概括等思维能力。

3、增强合作意识,激发学生学习数学的兴趣。

教学过〔chayi5.com〕程:

一、猜谜引入

1、猜谜:弟兄四五个,各有各的家,有谁走错门,让人笑掉牙。

生:(积极举手,低声喊)纽扣。

师:你为什么会想到是纽扣?

生:因为纽扣的位置扣错了,衣服穿出去就很难看,会让人笑话。

师:纽扣交换了位置,就会产生笑话,我们刚学了加法的运算定律,也和交换位置有关。将加法交换律说给同学们听听。

2、提问:用字母如何表示加法交换律、结合律呢?

适时板书:a+b=b+a a+b+c=a+(b+c)

3、设问:乘法有没有类似的规律?今天我们就来学习乘法的一些运算定律。(板书课题)

[评析:用谜语拉开学习的序幕,激发学生学习的兴趣,活跃了课堂气氛,让学生在轻松的环境中开始学习。以复习加法交换律和结合律作为教学的起点,为学生的探索规律作好了知识铺垫。]

二、猜测验证

1、猜一猜:乘法可能有哪些运算定律?

生1:乘法可能有交换律。

生2:乘法可能有结合律。

生3:

2、提问:乘法是否具有你们猜测的规律呢?怎样确认自己的猜测?看看哪个小组能完成这个光荣而又有意义的任务!(要求每人都把自己的想法介绍给自己的合作伙伴)

3、学生分组研究,教师巡视。(及时参与学生的讨论,寻找教学资源)

[评析:提出与旧知相关联的问题,让学生产生疑问、猜想,有效地激发了学习动机。]

4、交流。

(1)生1:我们小组经过讨论认为乘法有交换律。比如:35二53,016=160等等。两个乘数的位置变了,但它们的积不变。

生2:我们也是找了两个数,将它们相乘,发现两个乘数的位置变了,但它们的结果是相等的。

生3:我们小组也认为乘法有交换律,比如我们班有4个小组,每个组有8人,求一共有多少人?可以列成算式:48=32,也可以用84=32。这就说明4乘8等于8乘4。因此,乘法和加法一样,也有交换律。

提问:有没有不同意见?指名让刚才说乘法没有交换律的学生发言。

生:我开始以为乘法和加法不一样,可是,我用数举例后发现乘法也有交换律,比如3006=6300。

提问:你能用自己的语言描述一下乘法交换律吗?

生:两个数相乘,交换乘数的位置,积不变。

师:书上也有关于乘法交换律内容的叙述,让我们来看看。学生齐读。

师:和你们说的有什么不同?

生1:我们说的是乘数,但书上说的是因数。

生2:书上曾讲过乘数又叫因数,所以我们说交换乘数的位置,积不变也是对的。

师:会用字母表示吗?板书:ab=ba)。

电脑出示练习十七第2题。

师:请你判别一下,有没有运用乘法交换律?并说明理由。

[评析:放手让学生去探索规律,并通过小组合作想办法予以确认,这样不仅充分激发了学生学习的积极性,而且使学生体会了发现新规律的方法。

(2)生4:我们发现乘法也有结合律。如:(32)4=3(24)。

生5:我们也同意这种观点。我们是用应用题来说明的。比如:有6个盒子,每个盒子里有4枝钢笔,每枝钢笔5元,这些钢笔一共值多少元?可以用645=120(元),还可以用6(45片=120(元),它们的结果一样。

生6:我们是用算式来说明的,如:(3467)23=34状6723)。

提问:同学们能用自己的语言描述一下乘法结合律吗?

生7:三个数相乘,可以先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变。

师:你说得很准确,有什么好方法帮助记忆?

生8:我把加法结合律里的加换成乘,把和换成积,其余的不变。

生9:我还发明了一种好的记忆方法,用手势表示。(边说边演示)用三个手指代表三个数,其中两个手指靠在一起,表示先把前两个数相乘,第三个手指靠过来表示再和第三个数相乘它等于先把后两个手指靠在一起,再把第一个手指靠过来。

师:这个记忆方法确实很好,我们大家一起来试一试。师:怎样用字母表示乘法结合律?板书:(ab)c=a(bc)

[评析:乘法结合律与交换律相比,用语言完整地表述有一定难度。教师引导学生交流各人总结规律时的想法,不仅帮助学生规范了数学语言,而且为学生展示自身才能创造了足够的空间。]

5、比较加法运算定律和乘法运算定律。

师:我们学习了加法、乘法运算定律,你觉得它们有哪些相同、不同的地方?

生1:加法交换律和乘法交换律都要交换位置,不同的是,一个在加法里运用,另一个在乘法里运用。

生2:我觉得加法和乘法的运算定律很相似,只要记住其中一个,就能想出另外一个。

[评析:缘起加法交换律,再回到加法交换律,将两者进行比较,让学生感受到知识之间的内在联系。]

三、运用

1、回想一下,在我们的学习中有没有得到过乘法交换律和结合律的帮助?

生:我们验算乘法时就应用了乘法的交换律。

2、基本练习。

3、发展练习。利用乘法的交换律和结合律,写出所有和下面算式相等的式子。

869=( )

[评析:练习的层次鲜明,目标明确; 促进学生构建新的知识网络。]

四、小结。(略)

小学乘法分配律教案 篇二

教学目标

知识目标:通过新旧知识的沟通,观察、比较、抽象、概括出乘法分配律;初步理解和掌握它的结构特征;理解并运用乘法分配律进行简算,并能正确计算。

能力目标:渗透从特殊到一般,再由一般到特殊这种认识事物的方法。

培养学生观察、比较、抽象、概括等能力。

培养学生的数感和符号感。

情感目标:让孩子们自己生成“用符号记录整理的方法”,体验学习的快乐。

教学重难点

教学重点:引导学生通过观察、比较、抽象、概括出乘法分配律。

教学难点:应用乘法分配律解决实际问题。

教学工具

课件

教学过程

(一)生活引入,感知规律

1、在家里,你最喜欢谁?我也作了一个调查,咱们班很多同学是爸爸和妈妈很早起来为你准备早点、接送上学,辅导作业。

2、爸爸和妈妈都对我们那么好,我们可以自豪的说“爸爸和妈妈都爱我”。

3、爸爸和妈妈都爱我,这句话还可以怎样说?

4、我听说张磊和杨军都是李新建的好朋友,这句话还可以怎样说?

5、小结:同样一句话可以有不同的说法。生活中的这种现象在我们数学中是怎样的呢,今天我们就一起来探索数学中的规律。

[策略] 把数学知识依附于常见的现实生活问题中,引领学生发展自身灵性,寻求数学知识与现实问题间的本质联系,进而合理处理相关信息,结合鲜活的数学材料,触动学生的道德碰撞,给原本单一冷漠的内容注入人文的血液,促进学生感悟、内化。

(二)开放探究,建构规律

1、情境引入

讲本学期开学,学校要为一、二、三年级更换桌椅情况:

(课件播放),提出问题,引发学生思考:

(1)请仔细观察大屏幕:

学校为一年级更换3套桌椅共需要多少钱?

学校为二年级更换5套桌椅共需要多少钱?

学校为三年级更换6套桌椅共需要多少钱?

(2)请同桌两个同学选一个问题在练习纸上用两种方法解答?

(3)说说你的解题方法?你的算式表示什么意思?另外一种方法呢?解释一下。

(4)谁愿意接着汇报?

2、第一次发现

(1)仔细观察这三组算式,你能发现什么吗?可以与同桌讨论讨论。

小结:每一组算式的结果相等。

(2)我把这两个算式用等号来连接,行吗?为什么?

板书:(50+60)×3 = 50×3+60×3

(75+68)×5 = 75×5+68×5

(80+65)×6 = 80×6+65×6

3、第二次发现

(1)再观察这三组算式,还有什么发现吗?

(2)同学们,你们的发现是不是只是一种巧合,一种猜想呀?能不能举出一些这样的例子对你的猜想进行验证呢?

(3)每人举出一个例子,写在纸上,然后请同桌帮助验证

汇报交流:像这样的例子还能举出一些吗?举的完吗?

4、归纳总结:

(1)你们发现的这个规律叫做乘法分配律。同桌说说什么叫做乘法分配律?

(2)请看大屏幕,你们的意思是这样吗?小声读读。

(3)有什么不懂的词吗?

5、个性化理解

(1)你能用比较喜欢的形式来表达上面的这些等式吗?比如用字母,图形等。

根据学生回答教师板书:

(□+○)×☆=□×☆+○×☆

(甲+乙)×丙=甲×丙+乙×丙

(a+b)×c=a×c+b×c

(2)这些等式都表示什么意思呢?(同桌讨论,然后汇报)

(3)对于乘法分配律用字母表示感觉怎么样?

[策略]针对众多的数学事实,不急于引导学生发现规律,而是让学生运用朴素的语言概括出这些等式的共同特点,这些特点既是“乘法分配律”知识的雏形,更是学生建构知识的渐进台阶。在此基础上引出规律,水到渠成。尤其是,让学生用个性化的方式表示自己对乘法分配律的理解,更是有效的促进了学生对规律意义的个性化感悟。

(三)激活联系、应用规律。

1、请你把相等的两个算式连线。

(8+13)×4 41×(3+27)

3×(21+6) 7×5 +8

41×3 +41×27 3×21 +3×6

7×(5+8) 8×4 +13×4

(1)你为什么连得这么快?是计算了吗?

(2)这两个算式之间为什么不连了?能用乘法分配律的内容来解释吗?

2、根据乘法分配律填空:

(83+17)×3=□×□○□×□

10×25+4×25=(□○□)×□

(1)谁愿意展示一下你填写的。有不同意见吗?

(2)分别说说转化以后的算式和原来的算式比,哪一个让我们计算起来感觉比较简便了?为什么?

(3)小结:学习了乘法分配律可以灵活选择算法,怎样计算简便就怎样算。

[策略]多种练习也是一种信息源,解决问题的过程其实也是一种深化理解、蓄积“能量”的过程,是学生拓宽知识视野、完善认知结构、提升认识境界、增长人生智慧的过程。

3、联系旧知、同已有知识建立联系。

谈话:“乘法分配律”在过去学习中用过吗?咱们回顾一下。

现在我们每天都在练乘法竖式计算,看大屏幕。乘法竖式中也运用了乘法分配律?你们看出来了吗?

[策略]引导学生联想知识用途,勾起了学生对已有知识的回忆,凭借亲自计算得到的感悟领会到乘法分配律的广泛运用。

(四)课堂小结:

今天,学习了乘法分配律,你有什么想法?

(五)板书设计:

乘法分配律

(50+60)×3 = 50×3+60×3

(75+68)×5 = 75×5+68×5

(80+65)×6 = 80×6+65×6

……

(a+b)×c = a×c+b×c

乘法交换律教学设计 篇三

授课内容:乘法交换律

教学目标:

1、理解乘法交换律的意义。

2、通过观察、猜想、验证、总结得出乘法交换律。

3、会用字母公式表示乘法交换律,并会利用乘法交换律进行简便计算和验算。

4、让学生受到科学方法、科学态度的启蒙教育。

教学重点:掌握、猜想、验证、总结的学习方法。

教学难点:利用知识的正迁移,自主探究乘法交换律内容。

教学过程:

一、复习旧知,谈话导入

1、回忆加法交换律

师:同学们还记得加法交换律吗?

认能用自己的话或者公式,或者举一个例子,说一说加法交换律?

生:a+b=b+a2+3=3+2两个数相加,交换加数的位置,和不变,这叫做加法交换律

2、提出问题:

师:学了加法交换律你有什么想问的?

师:同学们加法具有交换律,减法、乘法、除法、也具有效换律吗?请同学们大胆猜想一下。

生:减法、除法没有。乘法有。

二、猜想验证,合作探究

1、提出假设

师:①这只是我们的猜想,到底是否成立,我们必须想办法去“验证”。

②用什么办法去验证呢?

生:用算式法验证

师:得出结论后,用自己的话概括规律。

2、探究要求

(1)验证,减法、乘法、除法是否具备交换律、请写出算式。

(2)你发现什么结论,记录下来。

(3)小组推选一名同学进行汇报。

3、小组合作探究

4、汇报、验证规律。

三、合作探究,得出结论

小结:减法和除法不具有交换律,乘法具有交换律。

师:你能举出乘法交换律的例子吗?这么多的例子举也举不完,能用字母公式表示一下吗?用字母表示a×b=b×a。

师:用语言怎样说?它有什么特点?(两个数相乘,交换因数的位置,它们的积不变,这叫乘法交换律。),这就是我们今天研究的问题“乘法交换律”板书课题。

师:我们是怎样研究这个问题的?

生:<先假设(猜想)再验证,最后得出结论>

师:其实许多数学问题都可以用这种方法来研究。

四、思考引领,应用知识

1、根据乘法交换律,在x里填上合适的数。

54×7=72×x38×160=x×x54×a=x×x

8200×x=x×x409×x=x×xx×x=x×x

2、把相等的两个算式用线连起来。

75×69429+257

a×26591×b

257+42969×75

b×91265×a

3、师:联系实际,巩固达标

师:同学们以前我们在什么地方用到乘法交换律?

生:做乘法验算时,交换因数的位置再乘一遍的方法来验算乘法,就是应用了这个定律。

4、计算下面两道题,并用交换因数的位置再乘一遍的方法进行验算。

140×251=108×123=

(1)指名板演、集体练习

(2)讲评:在这两题的验算中你有什么发现?

生:验算时只用乘法2次,使计算简便。

(3)那你们说学了乘法交换律有什么作用呢?

生:可以简便计算过程:

师:利用发现的规律,说一说。

5、下面哪些题目利用乘法交换律可以简便计算过程?

①444×213④555×632⑦2680×310

②302×512⑤450×208⑧723×456

③700×542⑥1800×635⑨109×606

总结交流:

(1)因数中间有零或者未尾有零交换位置相乘一般情况下可以简便计算过程。

(2)其中一个因数由重复的数字组成的,利用交换律计算也有简便。

5、两个数交换位置相乘,有时会有简便的地方?想一想,三个数相乘利用交换律是否有方便之处呢?

师出示:4×73×25=4×25×73=100×73=7300

生举例:2×73×50=2×50×73=100×73=7300

总结交流:三个相乘,若其中两个数相乘可以凑成整十、整百、整千交换位置相乘有方便之处。

五、全课的总结:这节课我们学习了什么?

你学会了什么?还有什么不懂之处?

以上就是差异网为大家带来的3篇《乘法交换律教学设计》,希望可以对您的写作有一定的参考作用,更多精彩的范文样本、模板格式尽在差异网。