集合教案【精选10篇】
作为一名辛苦耕耘的教育工作者,时常要开展教案准备工作,教案是保证教学取得成功、提高教学质量的基本条件。那么什么样的教案才是好的呢?差异网的小编精心为您带来了10篇《集合教案》,如果对您有一些参考与帮助,请分享给最好的朋友。
《集合》教学设计 篇一
教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
课型:新授课
教学目标:
(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;
(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;
教学重点:集合的基本概念与表示方法;
教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;
教学过程:
一、引入课题
军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?
在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。
阅读课本P2-P3内容
二、新课教学
(一)集合的有关概念
1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。
2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。
3.思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。
4.关于集合的元素的特征
(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。
(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。
(3)集合相等:构成两个集合的元素完全一样
5.元素与集合的关系;
(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A
(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a A(或a A)(举例)
6.常用数集及其记法
非负整数集(或自然数集),记作N
正整数集,记作N*或N+;
整数集,记作Z
有理数集,记作Q
实数集,记作R
(二)集合的表示方法
我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。
(1)列举法:把集合中的元素一一列举出来,写在大括号内。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;
例1.(课本例1)
思考2,引入描述法
说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。
(2)描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。
具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},…;
例2.(课本例2)
说明:(课本P5最后一段)
思考3:(课本P6思考)
强调:描述法表示集合应注意集合的代表元素
{(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。
辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。
说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
(三)课堂练习(课本P6练习)
三、归纳小结
本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。
四、作业布置
书面作业:习题1.1,第1-4题
五、板书设计(略
高一数学第一章《集合》教案 篇二
教学目标:
1.理解集合圈里各部分的意义。
2、会读集合圈中的信息,会按条件填写集合圈。
3、使学生会借助直观图,利用集合的思想方法解决简单的实际问题。 教学重难点:
1、会读集合圈中的信息,会按条件填写集合圈。
2、使学生会借助直观图,利用集合的思想方法解决简单的实际问题。
教具准备:
课件、活动卡 教学方法:探究法
教学课时:
1课时
教学过程:
一、帮小动物回家
1、创设情境,引入课题
(1)小动物在讨论在陆地上生活还是在水里生活好。一共来了10种动物,有6种动物可以在陆地上生活的,有6种动物可以在水里生活。这里面有几种动物既可以在陆地上生活也可以在水里生活?
引导学生质疑:
①来了10种小动物,为什么有6种生活在水里,6种生活在陆地?6+6=12(种)啊?
②有的既可以生活在陆地,又可以生活在水里。(适当给学生介绍“两栖动物”的常识,扩展学生知识面。)
(2)出示:蚂蚱 章鱼 虾 青蛙 蜗牛 鲤鱼 兔子 乌龟 海鱼 瓢虫
①这些动物和昆虫,你知道它们都是生活在哪里吗?(它们有的生活在陆地上,有的生活在水里)你能把它们分类一下吗?
②完成活动卡活动一,指名分类。
③全班一起分类。
④发现问题:乌龟和青蛙有时生活在水里,有时生活在陆地上。
2、图示方法,加深理解
(1)(课件出示)先是两个小组的集合圈。
(2)引导发现青蛙和乌龟两个圈里都有,如果只有一只小青蛙和一只小乌龟能分开站吗?
(3)出示合并隆的空集合圈,引导观察这个集合圈和分开的两个圈有什么不同。(有一块公共区域,这块公共区域可以表示什么?)
(4)全班交流,说说想法。
(5)师根据课堂实际情况适当小结。
(6)填写合并拢的集合圈。
(7)让学生说一说图中不同位置所表示的不同意义。
二、奇怪的报名表
1、出示:三(1)班参加语文、数学课外小组学生名单
(1)引导得到:
①参加语文小组的有(8)人 ②参加数学小组的有(9)人 (2)小猪的疑问
①小猪也有一个问题。是什么为题呢?出示:
这两个小组一共有( )人?(学生小组合作讨论答案,后指名回答,要说出思路)
②课件演示
a、找到即参加语文组又参加数学组的人(3人:杨明、李芳、刘红);
b、出示空集合圈,指名说说各个位置所表示的意义;
c、填写集合圈;(先填写公共部分)
d、出示各部分人数,引导计算两个小组一共有多少人?(让学生自己去找到答案,以得到多种解法)
解法一:5+3+6=14(人) 解法二:8+9-3=14(人)
三、巩固练习
1、活动卡-巩固练习
(1)只喜欢篮球的有( )人,只喜欢足球的有( )人。两种球都喜欢的有( )人。
2、教材p110——第1、2题。 板书设计:
数学广角
三(1)班参加语文、数学课外小组学生名单
解法一:5+3+6=14(人) 解法二:8+9-3=14(人)
小学数学教案 篇三
教学内容:教材P113第1题及练习二十五第2、3、13、14、21题。
教学目标:
知识与技能:帮助学生建构小数乘法的知识网络,并能理清各知识点之间的联系。能熟练、正确地进行笔算小数乘法,按照要求截取积的近似值,并能解答有关的小数乘法应用题。
过程与方法:通过题组练习,进一步培养学生的分析、判断和概括能力;通过小组合作学习,让学生学会交流,相互评价,提高学生的合作意识和数学交流表达能力。
情感、态度与价值观:培养学生良好的计算习惯,提高计算正确率及速度,更深刻了解积与因数的联系。
教学重、难点
重点:通过合作题组练习,使学生自我意识中建立小数乘法的知识网络,并能准确地用数学语言表达各个知识点,在思维中理清各知识之间的联系。
难点:深刻理清积与因数的联系及培养合作意识和数学交流表达能力。
教学方法:复习归纳,质疑引导;练习体验,小组交流。
教学准备:多媒体。
教学过程
一、复习小数点的移动引起小数大小的变化规律。
学生独立做一做
老师生交流小数点的移动的规律。
即时练习:完成教材第113页第1题(1)。
二、整理和复习小数乘除法的计算方法。
老师:元旦节,老老师家搞了一次小活动,我们一起来看看老老师的购物清单吧!
出示购物清单:苹果每千克2.5元,买了4.8千克;
买了3件同样的玩具,共用73.5元;糖果每千克1.2元,共用22.32元;
老师:从清单中你得到了哪些信息?根据信息你可以解决哪些数学问题?
老师:下面就请同学们算一算苹果的总价和玩具的单价吧!教老师巡视,算完后。
老师:谁来说说苹果的总价你是怎么解决的?
(先让一个学生在实物投影仪下展示,并让他说说2.5×4.8是怎样算的,
老师:那也就是说,计算小数乘法的方法是先,再,最后。板书:计算方法
老师:玩具的单价你又怎么解决的?(再让一个学生说73。5÷3是怎么算的,一起回忆数除数是整数的小数除法的计算方法。)
老师:算算糖果的单价吧。教老师巡视,算完后汇报方法。22.32÷1.2
老师:也就是说在计算除数是小数的除法时必须先把除数转化成整数,就像这里的22.32÷1.2就要转化为223.2÷12,再按除数是整数的除法进行计算。
出示:5.98÷0.23 19.76÷5.2 8.84÷1.7 21÷1.4
老师:这几道题在计算时该怎么转化呢?
除法法则:一看:看看除数是几位小数。二移:把除数和被除数的小数点同时向右移动相同的数位(把除数转换成整数)。三对齐:商的小数点和被除数的小数点对齐。
老师:同学们刚才算的三道题到底对不对呢?你有什么好办法?(说验算的方法)
老师:小数乘除法的验算与整数乘除法的验算方法是相通的。
即时练习:指名板演教材第115页练习二十五第2题。
三、整理和复习小数乘除法的简算
老师:刚才我们用竖式算出了苹果的总价,请同学们仔细观察这两个数的特征,你还可以用什么方法进行计算?试试吧!
(巡视,选有代表性的作业展示,指名说简算依据。)
老师:看来整数乘法运算定律也适用于小数。(板书:运算定律)
即时练习:完成教材练习二十五第3、13题。
四、复习取近似数
老师:既然是元旦节就要有节日的气氛,老老师准备用彩带布置家。我们一起看看吧!
用40米彩带做花环,彩带每卷长7.5米。
(1)需要买几卷彩带?40÷7.5=5.333(卷)≈6(卷)
老师:5.333是循环小数,而且循环小数是无限小数。(板:循环小数—无限小数)
老师:这里要用进一法取商的近似数。(板书:取近似数:进一法)
(2)一卷彩带3.18元,一共需要多少钱?(得数保留一位小数)
3.18×6=19.08(元)≈19.1(元)(板书:四舍五入法)
(3)每1.5米做一个花环,40米彩带可以做多少个花环?
40÷1.5=26.666(个)≈26(个)(板书:去尾法)
老师:取近似数就有三种方法,同学们可要根据实际情况灵活应用哟!
即时练习:完成教材第117页练习二十五第14题。
五、混合运算
老师:同学们的表现可真棒!这么快就把清单中的一些问题解决了。老老师这也有两道题目想请你们帮忙算一下,好吗?比比看谁算的快。
4.6+5.4÷0.27 3.2×25 ÷8
(学生汇报时要说运算顺序。)
老师:你是怎么想到要先算再算
老师:看来小数混合运算的运算顺序和整数混合运算的运算顺序是一样的。
(板书:运算顺序与整数的相同)
六、拓展提高:教材第118页练习二十五第21__题。
学生阅读题目,理解题意。
分析:领先的运动员与最后的运动员相遇时,两人跑完了2个3km即6km,所以两人的相遇时间可以用两人跑的总路程6km除以两人的速度和求得。相遇时离返回点的距离可以3km减去最后的运动员跑的路程,也可以用领运动员跑的路程减去3km求得。(10分钟,100m)
七、小结
老师:今天这节课我们一起对小数乘除法进行了整理与复习。谁来说说我们主要复习了哪些知识?这节课你收获最大的是什么?
八、作业:教材第113页第1题(2),练习二十五第3、5、6、16题。
板书设计
小数乘、除法复习课
因数→整数计算方法先,再,最后
除数→整数一看、二移、三对齐
运算定律
小数乘除法运算顺序与整数的相同
循环小数——无限小数
四舍五入法
近似数进一法
去尾法
高一数学第一章《集合》教案 篇四
教材分析:
“数学广角——集合”是教材专门安排来向学生介绍一种重要的数学思想方法的,即“集合”。教材例1通过统计表的方式列出参加语文小组和数学小组的学生名单,而总人数并不是这两个小组的人数之和,从而引发学生的认知冲突。这时,教材利用直观图(即韦恩图)把这两个课外小组的关系直观地表示出来,从而帮助学生找到解决问题的办法。教材只是让学生通过生活中容易理解的题材去初步体会集合思想,为后继学习打下必要的基础,学生只要能够用自己的方法解决问题就可以了。
?教学目标:?
1、学生借助直观图,初步体会集合的思想方法,感知韦恩图的产生过程。
2、能利用集合的思想方法来解决简单的实际问题。?
3、学生在探究、应用知识中体验数学的价值,渗透多种方法解决问题的意识。?
教学重点:学生借助直观图,初步体会集合的思想方法,感知韦恩图的产生过程。
教学重点:经历集合图的产生过程,理解集合图的意义,使学生会借助直观图,利用集合的思想方法解决简单的实际问题。
教学难点:经历集合图的产生过程,理解集合图的意义。
教学过程:
一、巧用对比,初悟“重复”
1.观察与比较(课件出示图片)父与子
2、提出问题:有2个爸爸2个儿子,一共有几个人?怎样列式计算?
第一种:无重复情况。
黄明,他的爸爸黄伟光。李玉,他的爸爸李文华。
预设:列式一:2+2=4(人)
第二种:有重复情况。
汪聪,他的爸爸汪立成,汪立成的爸爸汪华东。
列式二:2+2=4(人)4-1=3(人)
师追问:为什么减1?
二、初步探究,感知重叠
1、查看原始数据,引出重复。
师:我们来看看三(1)班是被老师选上的幸运之星。(课件出示)
书法比赛
小丁
李方
小明
小伟
东东
绘画比赛
小明
东东
丹丹
张华
王军
刘红
师:从这张表格中你了解到了哪些信息?
(2)师:一共有多少名同学参加比赛?
师:怎么会错了呢?再仔细看看,谁来说说?
(3)师:那到底是多少人呢?我们来数数看。
重复什么意思?指着第二个小明:“他算吗?”为什么不算?
(4)师:刚才你们算出来是11人,可现在我们数出来的怎么只有9人呢?、
2、揭示课题。(板书课题:重叠问题)。
三、经历过程,建立模型
1、激发欲望,明确要求。
师:刚才,我们通过仔细地查看三(1)班参赛的学生名单,发现有2个同学重复了,但是从这份名单中你能一下子就看出是哪2个人重复了吗?有难度是吧?
师:看来我这样记录不够清楚,大家想想办法,怎样重新设计一下这份名单能让我们看得更清楚一些?(课件出示要求:既要能让人很清楚地看出参加书法比赛的是哪5个人,参加绘画比赛的是哪6个人,又要能让人很明显地看出两项比赛都参加的是哪两个人。)
请同学们思考一下,大家现在有办法了吗?先不急着说,请把你想到的方法在练习纸上表示出来,行吗?你可以自己画,如果感觉有些困难也可以和你小组内的同学合作完成。
2、独立探究,创生维恩图
学生探究画法,师巡视,从中找出有代表性的作品准备交流。
3、展示交流,感知维恩图
师:我发现咱们班同学的画法很有创意,我从中选了几份,咱们共同来分享一下。我们不让画图的同学自己介绍,只把他们画的图让大家看,我觉得,不用自己介绍就能让别人看懂的方法那才是好方法。
预设:
第一种情况:做记号
师:你是怎么想的?
第二种情况:写在最前面;写在前面并圈出来
师:你是怎么想的?这样整理有什么好处?
师:(1)哪些同学是两项都参加的?你能上来指一指吗?我们可以给他们圈一圈。
引导:重复出现的同学用两个名字,我们容易看错。要是用一个名字,也能表示出他们既参加了书法比赛,又参加了绘画比赛,那该多好啊。
第三种情况:两项都参加的同学用一个名字表示(不是写在最前面的)
出示:他把这两个名字写在这合适吗?应该写在哪?
第四种情况:在前面并一个名字来表示
师:你是怎么想的?这样整理有什么好处?
师:哪一部分是参加书法的,你能用手指一下吗?要不用笔来圈一圈,参加绘画比赛的同学该怎么圈?
师:圈的时候,你们有什么发现?为什么?
师:看来,这样调整能清楚地表示重复和不重复的部分。
4、整理画法,理解维恩图
(1)动态演示维恩图产生过程
师:下面我们把同学们创造出来的韦恩图让电脑再演示一次吧。用一个圈来表示参加书法比赛的同学,再用一个圈来表示参加绘画比赛的同学(师边说边用红色和蓝色画了两个交叉的椭圆),演示形成过程。还是两个圈,不同的是这两个圈不是分开的,而是有一部分重叠在一块的,利用两个圈重叠的这一部分我们恰好可以用来表示什么?
(2)介绍维恩图的历史
师:这种图最早是英国的数学家韦恩提出的,后人就用他的名字来命名,称之为韦恩图。同学真了不起,你们和伟大的数学家韦恩想到一块去了。
(3)理解维恩图各部分意义
(课件出示用不同颜色,直观理解各部分意义)
师:仔细观察,你知道韦恩图的`各部分表示什么意思吗?
师:a.红色圈内表示的是什么?
b.蓝色圈里表示什么?
c.中间部分的两个表示什么?
d.左边的“紫色部分”表示什么?
e.右边的“绿色部分”表示什么?
师:对于韦恩图各部分表示的意思你都明白吗?请同位两个同学互相说一说。(学生同伴互说)
(4)比较突出维恩图的优势
我们把这个韦恩图和刚才的表格比较一下,哪个更好一些?好在哪?
(5)、数形结合,运用维恩图。
师:现在,你能不能根据韦恩图列算式来解决三(1)班一共有多少人参加了这两项比赛?教师巡视,找不同方法的学生进行板演
预设整理算法:
生1:5+6-2=9(人)
生2:3+2+4=9(人)
生3:5-2+6=9(人)
生4:6-2+5=9(人)
①看算式提问题:看第一位学生算式‘就图看算式,你有什么新启发?师:谁给他提问题?(生:你为什么减2?(课件动态演示)5在哪里?圈一圈。)
重点理解为什么-2。课件动态演示
②比较:
3+2+4=9(人)
5+6-2=9(人)
a.两道算式中都有个2,这个2表示什么呢?
圈出+2和-2,为什么(1)中是+2,(2)中是-2?
b、你能在第一个算式里找到5?6?
c. 3+2表示什么意思?2+4表示什么意思?这就是(1)算式中隐藏着的信息,你也能在(2)中找到隐藏着的信息吗?(课件演示)
师:现在我们能用这么多的方法算出三(1)班参加比赛的一共是9个人,是谁帮了我们的大忙啊?(韦恩图。)
四、解决问题,运用模型
1、创设情境,生活应用(课件演示)
这样的韦恩图除了能表示刚才的比赛问题,还能表示生活中的什么?
展示生活问题
(1)这是我们科学书中的重叠问题,找到重叠部分了吗?
(2)这是我们数学书中的重叠问题,谁重叠了?
(3)这是自然界的动物,它们之间存在重叠问题吗?
(4)这是鸡毛掸,找到重叠部分了吗?在哪里?看来,将木条重叠起来,可以增加长度,解决我们生活中的问题呢!
(5)、文具店的问题。
出示下题:
2、运用新知解决问题。
这些问题你们都能解决吗?(完成练习纸)
反馈:
第1题:(生活问题第5题文具店问题)你能把这些信息在韦恩图中表示出来吗?生填写韦恩图,并解决一共进了多少种货?
展示:5+5-3=7(种)
2+3+2=7(种)
师:这里的3表示什么?
为什么一个+3,一个-3呢?
师:比较一下这两个韦恩图(刚才的比赛问题和现在的进货问题),它们有什么相同的地方?
第2题:(生活问题第3题自然界的动物)对比正确和错误的。这两个小朋友填的不一样,你赞同谁的?填的时候有什么好方法?
第3题:(生活问题第4题鸡毛掸)一共有多长?要提醒大家的是什么?
五、展开变式,深化模型
师:下面我们再回过头来,看看那份学校的通知和我们已经解决的那个问题:每班一共要选多少人参加这两项比赛?我们一开始脱口而出的答案是5+6=11人,后来看到三(1)的参赛名单,发现有2人重复了,实际只有9个人。
我们现在再来思考这个问题,三(1)班是9人,其它班级呢?如三(2)班一定是9人吗?
老师可能派了几个同学?一共有几种可能?你能画图把自己的猜想表示出来吗?
反馈:5人。6人。7人。8人。9人。
课件动态演示:
师:仔细观察你有什么发现?
同学们,这样一个我们本来觉得很简单的问题,经过我们深入地思考,原来还有这么多的学问
六、回顾总结,延伸模型。
这节课你有什么收获?你还想知道什么?
高中数学集合教案设计 篇五
【教材分析】
1、知识内容与结构分析
集合论是现代数学的一个重要的基础。在高中数学中,集合的初步知识与其他内容有着密切的联系,是学习、掌握和使用数学语言的基础,集合论以及它所反映的数学思想在越来越广泛的领域中得到应用。课本从学生熟悉的集合(自然数集合、有理数的集合等)出发,结合实例给出了元素、集合的含义,学生通过对具体实例的抽象、概括发展了逻辑思维能力。
2、知识学习意义分析
通过自主探究的学习过程,了解集合的含义,体会元素与集合的“属于”关系,能选择合适的语言描述不同的具体问题,感受集合语言的意义和作用。
3、教学建议与学法指导
由于本节新概念、新符号较多,虽然内容较为浅显,但不应讲得过快,应在讲解概念的同时,让学生多阅读课本,互相交流,在此基础上理解概念并熟悉新符号的使用。通过问题探究、自主探索、合作交流、自我总结等形式,调动学生的积极性。
【学情分析】
在初中,学生学习过一些点的集合或轨迹,如:平面内到一个定点的距离等于定长的点的集合(圆);到一条线段的两个端点的距离相等的点的集合(线段的垂直平分线)。这对学生学习本节课的知识有一定的帮助,只不过现在我们要把这个“集合”推广,它不仅仅是点的集合或图形的集合,而是“指定的某些对象的全体”。集合语言是现代数学的基本语言,使用这种语言,不仅有助于简洁、准确地表达数学内容,还可以用来刻画和解决生活中的许多问题。学习集合,可以发展同学们用数学语言进行交流的能力。
【教学目标】
1、知识与技能
(1)学生通过自主学习,初步理解集合的概念,理解元素与集合间的关系,了解集合元素的确定性、互异性,无序性,知道常用数集及其记法;
(2)掌握集合的常用表示法——列举法和描述法。
2、过程与方法
通过实例了解集合的含义,体会元素与集合的“属于”关系,能选择合适的语言(如自然语言、图形语言、集合语言)描述不同的具体问题,提高语言转换和抽象概括能力,树立用集合语言表示数学内容的意识。
3、情态与价值
在掌握基本概念的基础上,能够解决相关问题,获得数学学习的成就感,提高学生分析问题和解决问题的能力,培养学生的应用意识。
【重点难点】
1、教学重点:集合的基本概念与表示方法。
2、教学难点:选择合适的方法正确表示集合。
【教学思路】
通过实例以及学生熟悉的数集,引入集合的概念,进而给出集合的表示方法,学生通过自我体会、自主学习、自我总结达到掌握本节课内容的目的。教学过程按照“提出问题——学生讨论——归纳总结——获得新知——自我检测”环节安排。
【教学过程】
课前准备:
提前留给学生预习方案:a.预习初中数学中有关集合的章节;b.预习本节内容,试着找出与以往的联系;c.搜集生活中的集合的使用实例。
导入新课:同学们,我们今天要学习的是集合的知识,在小学和初中,我们已经接触过了一些集合,例如,自然数的集合,有理数的集合,不等式x-7<3的解得集合,到一个顶点的距离等于定长的点的集合(即圆),等等。现在呢,我要说的是:我们大家通过对初中知识的预习和对本节课的预习我相信你们能够很大一部分已经掌握了本节知识的主要问题,对不对?(同学们会高兴地说:对!)
下面我们分三个小组,做个游戏,好不好?我们互相竞赛答题,互相评论优点与不足,好不好?(同学们在被调动起情绪的时候应该说:好!)
教与学的过程:
预设问题 设计意图 师生活动 教师活动
一组二组三组活动 同学们,通过看课本2页的(1)至(8)个例子,同学们有什么启发吗? 提出一个模糊一点的问题,留给三组学生更宽的思考空间。启发思考,激发兴趣。 教师点拨,及时纠正偏差的回答方向。(理想答案:我们学过很多集合的知识了。我们会举出一些集合的例子。)
学生三个组分组轮流回答。 你能说出他们有什么共同的特征吗? 为集合的定义及含义的给出作出铺垫,并培养学生的总结概括能力。 引导学生共同得出正确的结论。最后给出准确的定义:我们把研究的对象称为元素(element);把一些元素组成的总体叫做集合(set)(简称集)。 学生讨论,分组轮流回答。 你们能说出元素与集合是什么关系吗?怎么表示呀?用什么额符号表示啊? 通过学生自己总结,对元素与集合的关系记忆更深刻。 教师指导学生得出准确答案。(理想答案:集合是整体,元素是个体,集合有元素组成。集合用大写字母表示,例如A;元素用小写字母表示,例如a.如果a是集合A的元素,就说a属于A集合A,记做a∈A,如果a不是集合A中的元素,就说a不属于集合A,记做 A) 学生讨论,分组轮流回答。可以互相挑出对方回答问题的错误来比赛。 我们描述集合常用哪些方法呢?怎么表示? 引导学生认识集合的两种常见表示方法。 教师引导指正。(理想答案:列举法:把集合的元素一一列举出来,并用花括号“{ }”括起来表示集合的方法叫做列举法。 描述法:用集合所含元素的共同特征表示集合的方法称为描述法。具体方法是:在花括号内线写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。 同学们上黑板边回答边演练。 谁能试着说说集合中的元素有什么特点啊? 拓展知识,让学生对元素的特征有极爱哦理性的认识,并开发其探究思维。 教师点拨。(理想答案:元素一旦给出是确定的,确定性,没有相同的,互异性,是没有顺序的,无序性。即(1) 确定性: 对于任意一个元素,要么它属于某个指定集合,要么它不属于该集合,二者必居其一。(2) 互异性: 同一个集合中的元素是互不相同的。(3) 无序性:任意改变集合中元素的排列次序,它们仍然表示同一个集合。) 学生探究讨论,回答。 什么叫两个集合相等呢? 深刻理解集合。 教师给出答案。(如果构成两个集合的元素是一样的,我们称这两个集合是相等的。) 学生探讨回答。 典型例题
【题型一】 元素与集合的关系
1、设集合A={1,a,b},B={a,a2,ab},且A=B,求实数a,b.
2、已知集合A={a+2,(a+1)2,a2+3a+3}若1∈A,求实数a的值。
【题型二】 元素的特征
⑴已知集合M={x∈N∣ ∈Z},求M
小学数学教案 篇六
教学内容:
义务教育课程标准实验教科书二年级上册61页
教学目标:
1.让学生经历编制6的乘法口诀的过程,体验6的乘法口诀的来源,促使学生加深对每句口诀意义的理解,更好地掌握乘法口诀。
2.使学生熟记6的乘法口诀,能灵活运用6的乘法口诀解决问题。
3.培养学生认真观察、独立思考的良好习惯和推理概括能力,向学生渗透函数对应思想。
4.从学生的生活实际出发,激发学生学习数学的兴趣和参与的积极性,树立学生学好数学的信心,感受探索的乐趣。 重点:掌握6的乘法口诀。
难点:
熟记6的乘法口诀。
教学准备:
PPT
教学过程:
一、创设情境,激趣引入
师:刚才同学们悦耳的背书声,吸引海底的小鱼来到我们的课上和我们一起学习。
它们啊!出了几个题目让你们做!
小鱼说:你会吗? 2*5= 4*4= 3*1= 5*4= 1*2= 5*3= 4*2= 4*3= 2*2= 1*3= 2*4= 2*2=
师:同学们,你们1—5的乘法口诀学得真认真。今天我们继续学习6的乘法口诀,这次,老师想让同学们自己编口诀,你们敢挑战吗?
二、自主探索,总结规律
师:老师很喜欢鱼,可是又老是养不好鱼,于是我就想,用三角形摆金鱼可以吗?(课件先出示一条金鱼)
师:摆一条金鱼用了几个三角形? 摆2条呢?那么摆3条、4条、5条、6条呢? 学生讨论,然后完成下表。
(教材61页主题图下面的表格) 鱼(条) 1 2 3 4 5 6 三角形(个) 6 12
提问:
1、6是有几个6相加得到的?乘法算式怎么列? 那12呢?18、24、30、36呢?
2、你能根据1*6=6,1*6=6编出一句乘法口诀吗? ( 板书:一六得六)
师:你能编出6的其它5句口诀吗? 请你把教材61页的口诀补充完整 (板书: 二六十二 三六十八 四六二十四 五六三十 六六三十六 ) 在生汇报时师板书,并让生说一说口诀所表示的意思
师:同学们真了不起,一下子就把6的乘法口诀编出来了。齐读!
师:认真观察这些口诀,你发现了什么?
师:同学们真会思考。
这些发现都可以帮助我们记住6的乘法口诀。
师:你认为哪句容易记,哪句难记?你有好办法很快记住吗? 如果我忘记了“四六”是多少怎么办?
口答:5个6比4个6多几,比6个6少几?
师:现在自由记忆口诀看谁记得最快? 1)齐背 2)分组背 3)对口令 4)开火车背 5)指名背 6)同桌比赛,谁背得熟练 三、趣味练习,应用新知 1、用口诀读下面的乘法算式 2*6= 3*6= 4*6= 6*2= 6*3= 6*4= 6*5= 4*5= 6*6= 1*6= 2、钓鱼小高手2*6= 4*6= 6*4= 1*6= 6*5= 6*6= 3*6= 6*2= 6*3= 5*6= 3、谜语: 有时挂在天上,有时挂在树梢。
有时像个圆盘,有时像把镰刀。
师:这首诗里面一共有多少个字?谁能最快的知道?你是怎么想的? (引导学生运用口诀解决问题)
4、根据图形说口诀和乘法算式
四、情感沟通,全课小结
师:同学们,今天这节课你有什么收获?
五、板书设计
6的乘法口诀 1*6=6 一六得六 6*1=6 2*6=12 二六十二 6*2=12 3*6=18 三六十八 6*3=18 4*6=24 四六二十四 6*4=24 5*6=30 五六三十 6*5=30 6*6=36 六六三十六
还 可以加上教材分析、作业布置、教后反思。
集合的基本运算教学设计 篇七
一、教材分析
集合的基本运算是高中新课标A版实验教材第一册第一章第一节第三课时的内容,在此之前,学生已学习了集合的概念和基本关系,这为过渡到本节的学习起着铺垫的作用,本节内容在近年的高考中主要考核集合的基本运算,在整个教材中存在着基础的地位,为今后学习函数及不等式的解集奠定了基础数形结合的思想方法对学生今后的学习中有着铺垫的作用。
根据教材结构及内容以及教材地位和作用,考虑到学生已有的认知结构和心理特征,依据新课标制定以下教学目标:
二、教学目标
1,知识与技能目标:根据集合的图形表示,理解并集与交集的概念,掌握并集和交集
的表示法以及求解两个集合并集与交集的方法。
2,过程与方法目标:通过复习旧知,引入并集与交集的概念,培养学生观察、比较、分析、概括的能力,使学生的认知由具体到抽象的过程。
3,情感态度与价值观:积极引导学生主动参与学习的过程,激发他们用数学解决实际问题的兴趣,形成主动学习的态度,培养学生自主探究的数学精神以及合作交流的意识。
根据上述地位与作用的分析及教学目标,我确定了本节课的教学重点及难点,
三,教学重点与难点
重点:并集与交集的概念的理解,以及并集与交集的求解。
难点:并集与交集的概念的掌握以及并集与交集的求解各自的区别于联系。
为了突出重点和难点,结合学生的实际情况,接下来谈谈本节课的教法及学法;
四、教学方法与学法
本节课采用学生广泛参与,师生共同探讨的教学模式,对集合的基本关系适当的复习回顾以作铺垫,对交集与并集采用文字语言,数学语言,图形语言的分析,以突出重点,分散难点,通过启发式,观察的方法与数学结合的思想指导学生学习。
那么在本节课中我的教学过程是这样设计的,
五、教学过程
1复习旧知、引入主题
问题1、实数有加法运算,类比实数的加法运算,集合是否也可以“相加”呢?
由此引入了本节课的课;集合的基本运算,并让学生观察这样三个集合
集合A={1,3,5},B={2,4,6},C={1,2,3,4,5,6}并让学生思考集合A、集合B并与集合C之间有什么关系?
通过对以上集合的观察、比较、分析、学生容易得出集合C里面的元素由集合A或B里边得元素组成,像这样的关系我们把它叫做并集,得出并集的概念后我会引导学生发现并集里边的关键词“或”字,(为了使学生加深对“或”字的理解,我会举出生活中的例子,书记或主任去开会,这里有三层意思:(1)书记去开会,(2)主任去开会,(3)书记和主任都去开会类比这个例子让学生自己归纳出并集中“或”的三层意思)
引入并集的符号“”,并用数学语言描述A与B的并集:或}介绍Veen图
通过对书上例4的讲解,让学生了解当求解并集时出现相同的元素我们只能算一次,这是由集合的互易性确定的,由此复习了集合的互易性,
再对例5的讲解,让学生会用数轴来求解并集,
学生学习了并集含义之后,我会让学生思考这样一个问题,
问题2:除了并集之外,集合还有其他的运算吗?并让他们观以下的集合:
A={1,2,3}B={3,,4,5}C={3}让学生类比并集的方式归纳出它们之间的关系:集合C里面的元素在集合A且在集合B里面,像这样的关系我们把它叫做交集,
引导学生发现交集里面的关键词“且”,介绍交集的符号“”用数学语言表示交集:且};介绍Veen图
对书上例6的讲解让学生了解集合与我们的生活息息相关,从而激发他们学习是学的兴趣,并学会用自然语言来描述两个集合的交集,
例7:让学生了解当两条直线没有交点即两个集合没有公共部分的时候,他们的交集不是不存在,而是他们的交集为空集,由此复习了空集的概念,
让学生完成书上的练习,
1、课堂练习,反馈信息。(P11,1、2题)
在以上的环节中,老师只起了引导的作用,而学生是主体,充分的调动学生的积极性与主动性,让学生的学习过程在老师的引导下的知识在创造。
2、课堂小结,自我评价。
通过提问,引导学生对所学的知识、思想方法进行小结,形成知识系统,用激励性的语言加以点评,让学生思想尽量发挥完善。
3、作业布置,反馈矫正。(P12,6、7)
集合的基本运算教学设计 篇八
一。教学目标:
1、知识与技能
(1)理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集。
(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集。
(3)能使用Venn图表达集合的运算,体会直观图示对理解抽象概念的作用。
2、过程与方法
学生通过观察和类比,借助Venn图理解集合的基本运算。
3、情感。态度与价值观
(1)进一步树立数形结合的思想。
(2)进一步体会类比的作用。
(3)感受集合作为一种语言,在表示数学内容时的简洁和准确。
二。教学重点。难点
重点:交集与并集,全集与补集的概念。
难点:理解交集与并集的概念。符号之间的区别与联系.
三。学法与教学用具
1、学法:学生借助Venn图,通过观察。类比。思考。交流和讨论等,理解集合的基本运算。
2、教学用具:投影仪。
四。教学思路
(一)创设情景,揭示课题
问题1:我们知道,实数有加法运算。类比实数的加法运算,集合是否也可以“相加”呢?
请同学们考察下列各个集合,你能说出集合C与集合A.B之间的关系吗?
引导学生通过观察,类比。思考和交流,得出结论。教师强调集合也有运算,这就是我们本节课所要学习的内容。
(二)研探新知
l.并集
—般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集。
记作:A∪B.
读作:A并B.
其含义用符号表示为:
用Venn图表示如下:
请同学们用并集运算符号表示问题1中A,B,C三者之间的关系。
练习。检查和反馈
(1)设A={4,5,6,8),B={3,5,7,8),求A∪B.
(2)设集合
让学生独立完成后,教师通过检查,进行反馈,并强调:
(1)在求两个集合的并集时,它们的公共元素在并集中只能出现一次。
(2)对于表示不等式解集的集合的运算,可借助数轴解题。
2、交集
(1)思考:求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?
请同学们考察下面的问题,集合A.B与集合C之间有什么关系?
②B={|是新华中学2004年9月入学的高一年级同学},C={|是新华中学2004年9月入学的高一年级女同学}。
教师组织学生思考。讨论和交流,得出结论,从而得出交集的定义;
一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集。
记作:A∩B.
读作:A交B
其含义用符号表示为:
接着教师要求学生用Venn图表示交集运算。
(2)练习。检查和反馈
①设平面内直线上点的集合为,直线上点的集合为,试用集合的运算表示的位置关系。
②学校里开运动会,设A={|是参加一百米跑的同学},B={|是参加二百米跑的同学},C={|是参加四百米跑的同学},学校规定,在上述比赛中,每个同学最多只能参加两项比赛,请你用集合的运算说明这项规定,并解释集合运算A∩B与A∩C的含义。
学生独立练习,教师检查,作个别指导。并对学生中存在的问题进行反馈和纠正。
(三)学生自主学习,阅读理解
1.教师引导学生阅读教材第10~11页中有关补集的内容,并思考回答下例问题:
(1)什么叫全集?
(2)补集的含义是什么?用符号如何表示它的含义?用Venn图又表示?
(3)已知集合。
(4)设S={|是至少有一组对边平行的四边形},A={|是平行四边形},B={|是菱形},C={|是矩形},求。
在学生阅读。思考的过程中,教师作个别指导,待学生经过阅读和思考完后,请学生回答上述问题,并及时给予评价。
(四)归纳整理,整体认识
1.通过对集合的学习,同学对集合这种语言有什么感受?
2.并集。交集和补集这三种集合运算有什么区别?
(五)作业
1.课外思考:对于集合的基本运算,你能得出哪些运算规律?
2.请你举出现实生活中的一个实例,并说明其并集。交集和补集的现实含义。
3.书面作业:教材第12页习题1.1A组第7题和B组第4题。
《集合》教学设计 篇九
教学目标:
1.让学生经历韦恩图的产生过程,能借助直观图,利用集合的思想方法解决简单的实际问题。
2.培养学生善于观察、善于思考的学习习惯。使学生感受到数学在现实生活中的广泛应用,尝试用数学的方法解决实际生活中的问题,体验解决问题策略的多样性。
教学重点:让学生感知集合的思想,并利用集合的思想方法解决简单的实际问题。
教学难点:学生对重叠部分的理解。
教学准备:多媒体课件、姓名卡片等。
教学过程:
(一)创设情境,引出新知
1.出示信息。
出示教科书例1,只出示统计表,不出示问题。让学生说一说从中获得了哪些信息。
2.提出问题,激发“冲突”
让学生自由提出想要解决的问题,重点关注“参加这两项比赛的共有多少人”这个问题,让学生解答。关注不同的答案,抓住“冲突”,激发学生探究的欲望。
(二)自主探究,学习新知
1.独立思考表达方式,经历知识形成过程。
师:大家对这个问题产生了不同的意见。你能不能借助图、表或其他方式,让其他人清楚地看出结果呢?
学生独立思考,并尝试解决。
2.汇报交流,初步感知集合概念。
(1)小组交流,互相介绍自己的作品。
(2)选择有代表性的方案全班交流。
请每幅作品的创作者上台介绍自己的思考过程,注意追问“如何表示出两项比赛都参加的学生”,体会两个集合中的公共元素构成的交集。
预设1:把参加两项比赛的学生姓名分别列出,把相同的名字连起,就找到两项比赛都参加的学生了,有3人。这样参加跳绳比赛的9人,加上参加踢毽比赛的8人,再去掉3个重复的,应该是14人。
预设2:先写出所有参加跳绳比赛同学的姓名,再写参加踢毽比赛的。如果与前面的相同就不重复写了,连线就能表示了。一共写出了14个不同的姓名,说明参加比赛的有14人。从姓名上如果引出两条线,就说明他两项比赛都参加了。
预设3:把参加两项比赛学生的姓名分别放到两个长方形里,再把两项比赛都参加的学生的名字移到一边,两个长方形里都有这三个名字,把这两个长方形的这部分重叠起来,名字只出一次就可以了。可以看出只参加跳绳比赛的有6人,两项比赛都参加的有3人,只参加踢毽比赛的有5人,一共有14人。
3.对比分析,介绍韦恩图。
(1)对比、分析,提示课题。
师:同学们解决问题的能力真强,而且画出了这么多不同的图示表示。上面的三幅图中,你更喜欢哪一幅?为什么?
预设1:喜欢第三幅,去掉了重复的学生的姓名,更清楚,很容易看出参加这两项比赛的学生情况。
预设2:喜欢第三幅,用两个长方形的重叠部分表示两项比赛都参加的学生,很直观。
师:在数学上,我们把参加跳绳比赛的学生看作一个整体,叫做一个集合;把参加踢毽比赛的学生看作一个整体,也是一个集合。今天我们就研究集合。(板书课题:集合。)
(2)介绍用韦恩图表示集合。
师:第三幅图先把参加跳绳的和踢毽的学生的姓名分别放在了长方形里,很直观。回忆一下,在认识百以内数的时候,按要求写数时,就把提供的数和按要求写出的数都用类似长方形的圈圈了起,每个圈都分别表示一个集合。
师:在数学上我们常用这样的方法,直观地把集合中的具体事物表示出来。(多媒体课件出示左下图,或在黑板上将姓名卡片圈起。)
师:这个图表示什么?
预设:参加跳绳比赛的学生的集合。
出示右上图,随学生回答将参加踢毽比赛的学生姓名填入圈中。
在填入姓名时,引导学生发现,每个圈中的姓名不能重复、不能遗漏,体会集合元素的互异性;每个圈中姓名的摆放次序可以多样,体会集合元素的无序性。
(3)介绍用韦恩图表示集合的运算。
提问:利用这两个图怎样才能让他人直观地看出“参加这两项比赛的人员情况”呢?
通过多媒体课件,动态展示将左右两个图部分重叠的过程,或操作姓名卡片,去掉重复的姓名卡片,帮助学生理解姓名出现两次的学生是这两个集合的公共元素,可以用两个图的重叠部分表示它们的交集。
提问:中间重叠的部分表示的是什么?
预设:两项比赛都参加的学生;既参加跳绳比赛又参加踢毽比赛的学生。
提问:整个图表示的是什么?
预设:参加这两项比赛的学生;参加跳绳比赛或参加踢毽比赛的学生。
4.列式解答,加深对集合运算的认识。
(1)尝试独立解决。
(2)汇报交流,体会解决问题的多种方法。
预设:9+8-3=14,9+(8-3)=14,8+(9-3)=14,6+3+5=14等。
让学生通过图示与算式结合进行表达,感悟多种集合知识。可以让学生在韦恩图上指一指它们求出的是哪一部分,体会并集;指一指算式中每一步表达的是哪一部分,如“8-3”和“9-3”,体会差集。
(3)比较辨析,体会基本方法。
通过对各种计算方法的比较,发现虽然具体列式方法不同,但都解决了问题,即求出了两个集合的并集的元素个数。重点让学生说一说9+8-3=14这一算式表达的含义,“参加跳绳比赛的人数加上参加踢毽比赛的人数再减去两项比赛都参加的人数”,体会“求两个集合的并集的元素个数,就是用两个集合的元素个数的和减去它们的交集的元素个数”这一基本方法。
(三)联系生活,巩固练习
1.完成“做一做”第1题。
先独立完成,再汇报交流。
可先分别出示两个集合圈,让学生填入相应的序号,再利用多媒体课件动态展示将两个集合并的过程。
2.完成“做一做”第2题。
学生先独立完成,再汇报交流。
提问1:你是用什么方法解答第(1)题的?要注意什么?
预设:圈出重复的姓名,再数出。要认真仔细找,不要漏掉。
提问2:第(2)题是求什么?你是用什么方法解答的?
预设:第(2)题求的是获得“语文之星”或“数学之星”的一共有多少人,只要获得了任何一个奖都要计算进去。先数出获得“语文之星”的集合的人数,再数出获得“数学之星”的集合的人数,相加后,再去掉既获得“语文之星”又获得“数学之星”的人数。如果学生理解题意有困难,可以借助韦恩图帮助学生理解。
(四)全课小结
师:今天我们学习了集合的知识,还会运用集合知识解决生活中的问题。说一说今天你有什么收获。
《集合》教学设计 篇十
预设目标:
1、通过欣赏各类邮票,初步感知邮票的基本特征和用途,提高观察判断能力。
2、激发幼儿对邮票的兴趣,乐意与同伴交流分享经验。
3、尝试设计邮票,发展幼儿审美、想像以及动手操作能力,体验创作的乐趣。
活动准备:事先与幼儿一起收集各种各样邮票、集邮册、放大镜、信、图画纸、卡纸、腊光纸、水彩笔、旧图书、花边剪刀、浆糊、抹布等。
活动一感知与表达《邮票的秘密》
指导要点:
1、以参观邮票展览的形式,组织幼儿一边欣赏邮票一边展开讨论:我发现邮票有什么秘密?
△鼓励幼儿发现与别人不同的问题,师生一起讨论交流。
2、集中交流,鼓励幼儿把自己发现的秘密与大家一起分享,
在幼儿讲述的基础上,帮助幼儿提升经验,了解邮票的基本特征。
△寻找邮票的相同之处。
△比较邮票的不同之处。
△邮票有什么用途?
3、分组欣赏邮票或集邮册,引导幼儿继续发现邮票还有什么秘密?
4、交流与分享,请幼儿讲述自己喜欢的一张邮票以及自己还发现了什么秘密。
5、自由讨论:你喜欢邮票吗?为什么?我们要怎样保护邮票?
活动二《设计邮票》
指导要点:
1、启发幼儿想像:如果你是邮票设计师,你要设计和发明什么样的邮票?
2、介绍每组提供的材料和注意事项。
3、幼儿尝试设计邮票,并为自己的邮票标价。
△鼓励幼儿大胆创作,力争与别人不一样,也可以与同伴合作绘画一组有联系的事物,学习协商与合作。
4、展示幼儿作品,布置邮展或制成“小小集邮册”,分享交流创作的乐趣。
以上内容就是差异网为您提供的10篇《集合教案》,您可以复制其中的精彩段落、语句,也可以下载DOC格式的文档以便编辑使用。
推荐作文:
- ·电力中层干部述职报告【最新3篇】
- ·应急预案演练计划【优秀10篇】
- ·立爱国之志 成报国之才-记叙文600字
- ·保健品市场调查报告(优秀5篇)
- ·小学教研工作计划【最新10篇】
- ·代课教师转正申请书(最新8篇)
- ·它真让我着迷作-记叙文550字
- ·精彩的课本剧背后-记叙文作文500字
- ·最新小天才实习心得体会报告【通用3篇】
- ·前人栽树后人乘凉-看图写话作文650字
- ·幸福的时刻-幸福作文600字
- ·生活是取之不竭的写作源泉-记叙文900字
- ·2022年杭州市总工会工作报告最新8篇
- ·辞职信最新7篇
- ·中秋佳节的夜里-节日作文500字
- ·恐怖的课后服务-记叙文1000字
- ·这才是少年应有的模样-抒情作文700字
- ·漫画假文盲-三年级记叙文400字
- ·照顾老人的保姆住家【优秀3篇】
- ·收获成长-励志作文700字
- ·世界急救日方案【优秀4篇】
- ·幼儿园中班说课稿(精选7篇)
- ·五年级教学工作计划(优秀9篇)
- ·美丽的植物园-春游作文400字
- ·施工员实习周记(3篇)
- ·自查报告格式_自查报告(最新10篇)
- ·五台山-推荐一个好地方作文350字
- ·筝舞蓝天-记叙文700字
- ·心儿怦怦跳-记叙文300字
- ·奋斗是最美好的青春宣言-记叙作文900字