高二数学必修五教学知识点(优秀6篇)
说到高二数学,很多同学都会说难很难,的确,相对而言,高二数学是高中数学中最难的一部分,但我们一定要把知识点给吃透。这次差异网为您整理了6篇《高二数学必修五教学知识点》,如果对您有一些参考与帮助,请分享给最好的朋友。
高二数学必修五知识点整理 篇一
函数的性质:
函数的单调性、奇偶性、周期性
单调性:注意定义是相对与某个具体的区间而言。
判定方法有:定义法(作差比较和作商比较)
导数法(适用于多项式函数)
复合函数法和图像法。
应用:比较大小,证明不等式,解不等式。
奇偶性:注意区间是否关于原点对称,比较f(x)与f(-x)的关系。
f(x)-f(-x)=0f(x)=f(-x)f(x)为偶函数。
f(x)+f(-x)=0f(x)=-f(-x)f(x)为奇函数。
判别方法:定义法,图像法,复合函数法
应用:把函数值进行转化求解。
周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。
其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期。
应用:求函数值和某个区间上的函数解析式。
高二数学必修五知识点总结 篇二
数列
1、数列的定义及数列的通项公式:
①。 anf(n),数列是定义域为N
的函数f(n),当n依次取1,2,时的一列函数值 ② i.归纳法
若S00,则an不分段;若S00,则an分段iii. 若an1panq,则可设an1mp(anm)解得m,得等比数列anm
Snf(an)
iv. 若Snf(an),先求a
1得到关于an1和an的递推关系式
Sf(a)n1n1Sn2an1
例如:Sn2an1先求a1,再构造方程组:(下减上)an12an12an
Sn12an11
2、等差数列:
① 定义:a
n1an=d(常数),证明数列是等差数列的重要工具。 ② 通项d0时,an为关于n的一次函数;
d>0时,an为单调递增数列;d<0时,a
n为单调递减数列。
n(n1)2
③ 前nna1
d,
d0时,Sn是关于n的不含常数项的一元二次函数,反之也成立。
④ 性质: ii. 若an为等差数列,则am,amk,am2k,…仍为等差数列。 iii. 若an为等差数列,则Sn,S2nSn,S3nS2n,…仍为等差数列。 iv 若A为a,b的等差中项,则有A3.等比数列:
① 定义:
an1an
q(常数),是证明数列是等比数列的重要工具。
ab2
。
② 通项时为常数列)。
③。前n项和
需特别注意,公比为字母时要讨论。
高二数学必修五教学知识点 篇三
函数的单调性、奇偶性、周期性
单调性:定义:注意定义是相对与某个具体的区间而言。
判定方法有:定义法(作差比较和作商比较)
导数法(适用于多项式函数)
复合函数法和图像法。
应用:比较大小,证明不等式,解不等式。
奇偶性:
定义:注意区间是否关于原点对称,比较f(_)与f(-_)的关系。f(_)-f(-_)=0f(_)=f(-_)f(_)为偶函数;
f(_)+f(-_)=0f(_)=-f(-_)f(_)为奇函数。
判别方法:定义法,图像法,复合函数法
应用:把函数值进行转化求解。
周期性:定义:若函数f(_)对定义域内的任意_满足:f(_+T)=f(_),则T为函数f(_)的周期。
其他:若函数f(_)对定义域内的任意_满足:f(_+a)=f(_-a),则2a为函数f(_)的周期。
应用:求函数值和某个区间上的函数解析式。
四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。
常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考)
平移变换y=f(_)→y=f(_+a),y=f(_)+b
注意:(ⅰ)有系数,要先提取系数。如:把函数y=f(2_)经过平移得到函数y=f(2_+4)的图象。
(ⅱ)会结合向量的平移,理解按照向量(m,n)平移的意义。
对称变换y=f(_)→y=f(-_),关于y轴对称
y=f(_)→y=-f(_),关于_轴对称
y=f(_)→y=f|_|,把_轴上方的图象保留,_轴下方的图象关于_轴对称
y=f(_)→y=|f(_)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数)
伸缩变换:y=f(_)→y=f(ω_),
y=f(_)→y=Af(ω_+φ)具体参照三角函数的图象变换。
一个重要结论:若f(a-_)=f(a+_),则函数y=f(_)的图像关于直线_=a对称;
高二数学必修五知识点总结 篇四
排列P------和顺序有关
组合C-------不牵涉到顺序的问题
排列分顺序,组合不分
例如把5本不同的书分给3个人,有几种分法。"排列"
把5本书分给3个人,有几种分法"组合"
1、排列及计算公式
从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示。
p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1)。
2、组合及计算公式
从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号
c(n,m)表示。
c(n,m)=p(n,m)/m!=n!/((n-m)!_!);c(n,m)=c(n,n-m);
3、其他排列与组合公式
从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!。
n个元素被分成k类,每类的个数分别是n1,n2,。.。nk这n个元素的全排列数为
n!/(n1!_2!_.。_k!)。
k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m)。
排列(Pnm(n为下标,m为上标))
Pnm=n×(n-1)。.。.(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n
组合(Cnm(n为下标,m为上标))
Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m
2008-07-0813:30
公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9________
从N倒数r个,表达式应该为n_n-1)_n-2)。.(n-r+1);
因为从n到(n-r+1)个数为n-(n-r+1)=r
高二年级数学必修五知识点归纳 篇五
两角和与差的三角函数:
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-cosAsinB?
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA)
cot(A-B)=(cotAcotB+1)/(cotB-cotA)
三角和的三角函数:
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
辅助角公式:
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
tant=B/A
Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B
倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
三倍角公式:
sin(3α)=3sinα-4sin^3(α)
cos(3α)=4cos^3(α)-3cosα
半角公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
降幂公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
万能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
积化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
高二数学必修五知识点总结 篇六
解三角形
1、三角形三角关系:A+B+C=180°;C=180°-(A+B);
2、三角形三边关系:a+b>c; a-b3、三角形中的基本关系:sin(AB)sinC,cos(AB)cosC,tan(AB)tanC, ABCABCABCcos,cossin,tancot 222222
4、正弦定理:在C中,a、b、c分别为角、、C的对边,R为C的外abc2R. 接圆的半径,则有sinsinsinCsin
5、正弦定理的变形公式:
①化角为边:a2Rsin,b2Rsin,c2RsinC; abc,sin,sinC; 2R2R2R
abcabc③a:b:csin:sin:sinC;④。 sinsinsinCsinsinsinC②化边为角:sin6、两类正弦定理解三角形的问题:
①已知两角和任意一边,求其他的两边及一角。
②已知两角和其中一边的对角,求其他边角。(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解))
7、余弦定理:在C中,有abc2bccos,bac2accos, 222222c2a2b22abcosC.
b2c2a2a2c2b2a2b2c2
8、余弦定理的推论:cos,cos,cosC。 2bc2ac2ab(余弦定理主要解决的问题:1.已知两边和夹角,求其余的量。2.已知三边求角)
9、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。②已知三边求角)
10、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式设a、b、c是C的角、、C
的对边,则:
①若abc,则C90;②若abc,则C90;
③若abc,则C90.
以上就是差异网为大家整理的6篇《高二数学必修五教学知识点》,希望对您的写作有所帮助。
推荐作文:
- ·团日活动策划方案【最新10篇】
- ·香煎银鳕鱼-小制作作文300字
- ·妈妈,我想对您说-记叙作文500字
- ·考试-随想作文300字
- ·个人意识形态工作总结报告【优秀5篇】
- ·工作岗位职责描述【优秀10篇】
- ·收获颇丰的一次对话-记叙文1600字
- ·那些日子不能忘-记叙文作文1000字
- ·期末大考-记叙作文400字
- ·激动的入队仪式-记叙作文550字
- ·看电影《哈利波特与凤凰社》-记叙文200字
- ·任性的代价-小学生记叙作文600字
- ·清明节活动总结【最新9篇】
- ·格林童话有感-记叙文450字
- ·味-关于味道的作文800字
- ·窗-记叙文作文600字
- ·那次好惊险-记叙文600字
- ·游三潭印月-游记作文600字
- ·端午节活动方案精选7篇
- ·世界粮食日广播稿(优秀2篇)
- ·顽强是美丽的-记叙文作文300字
- ·“怪物”-记叙作文400字
- ·财务管理个人简历最新5篇
- ·绊伴-初中记叙文700字
- ·雨乡-抒情作文700字
- ·暑假游记-难忘的旅游作文450字
- ·2023年村支部书记述职报告最新10篇
- ·小学四年级语文教案优秀9篇
- ·那段温暖的岁月-记叙文作文700字
- ·竞选班委演讲稿范文【最新5篇】