对数函数教案【优秀9篇】
对数函数教案 篇一
教学目标:
(一)教学知识点:1.对数函数的概念;2.对数函数的图象和性质。(二)能力训练要求:1.理解对数函数的概念;2.掌握对数函数的图象和性质。
(三)德育渗透目标:1.用联系的观点分析问题;2.认识事物之间的互相转化。
教学重点:
对数函数的图象和性质
教学难点:
对数函数与指数函数的关系
教学方法:
联想、类比、发现、探索
教学辅助:
多媒体
教学过程:
一、引入对数函数的概念
由学生的预习,可以直接回答“对数函数的概念”
由指数、对数的定义及指数函数的概念,我们进行类比,可否猜想有:
问题:1.指数函数是否存在反函数?
2、求指数函数的反函数.
①;
②;
③指出反函数的定义域.
3、结论
所以函数与指数函数互为反函数.
这节课我们所要研究的便是指数函数的反函数——对数函数.
二、讲授新课
1、对数函数的定义:
定义域:(0,+∞);值域:(-∞,+∞)
2、对数函数的图象和性质:
因为对数函数与指数函数互为反函数.所以与图象关于直线对称.
因此,我们只要画出和图象关于直线对称的曲线,就可以得到的图象.
研究指数函数时,我们分别研究了底数和两种情形.
那么我们可以画出与图象关于直线对称的曲线得到的图象.
还可以画出与图象关于直线对称的曲线得到的图象.
请同学们作出与的草图,并观察它们具有一些什么特征?
对数函数的图象与性质:
图象
性质(1)定义域:
(2)值域:
(3)过定点,即当时,(4)上的增函数
(4)上的减函数
3、图象的加深理解:
下面我们来研究这样几个函数:,,,.
我们发现:
与图象关于X轴对称;与图象关于X轴对称.
一般地,与图象关于X轴对称.
再通过图象的变化(变化的值),我们发现:
(1)时,函数为增函数,(2)时,函数为减函数,4.练习:
(1)如图:曲线分别为函数,,,,的图像,试问的大小关系如何?
(2)比较下列各组数中两个值的大小:
(3)解关于x的不等式:
思考:(1)比较大小:
(2)解关于x的不等式:
三、小结
这节课我们主要介绍了指数函数的反函数——对数函数.并且研究了对数函数的图象和性质.
四、课后作业
课本P85,习题2.8,1、3
高中数学对数函数教案 篇二
1. 研究相关函数的性质
例1. 求下列函数的定义域:
(1) (2) (3)
先由学生依次列出相应的不等式,其中特别要注意对数中真数和底数的条件限制。
2. 利用单调性比较大小 (板书)
例2. 比较下列各组数的大小
(1) 与 ; (2) 与 ;(3) 与 ; (4) 与 .
让学生先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小。最后让学生以其中一组为例写出详细的比较过程。
《对数函数的图像与性质》教案 篇三
《对数函数》课件设计
教学目标
1。 在指数函数及反函数概念的基础上,使学生掌握对数函数的概念,能正确描绘对数函数的图像,掌握对数函数的性质,并初步应用性质解决简单问题.
2。 通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想.
3。 通过对数函数有关性质的研究,培养学生观察,分析,归纳的思维能力,调动学生学习的积极性.
教学重点,难点
重点是理解对数函数的定义,掌握图像和性质.
难点是由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质.
教学方法
启发研讨式
教学用具
投影仪
教学过程
一。 引入新课
今天我们一起再来研究一种常见函数.前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数.
反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数.
提问:什么是指数函数?指数函数存在反函数吗?
由学生说出 是指数函数,它是存在反函数的.并由一个学生口答求反函数的过程:
由 得 .又 的值域为 ,
所求反函数为 .
那么我们今天就是研究指数函数的反函数-----对数函数.
2.8对数函数 (板书)
一。 对数函数的概念
1。 定义:函数 的反函数 叫做对数函数.
由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么?
教师可提示学生从反函数的三定与三反去认识,从而找出对数函数的。定义域为 ,对数函数的值域为 ,且底数 就是指数函数中的 ,故有着相同的限制条件 .
在此基础上,我们将一起来研究对数函数的图像与性质.
二.对数函数的图像与性质 (板书)
1。 作图方法
提问学生打算用什么方法来画函数图像?学生应能想到利用互为反函数的两个函数图像之间的关系,利用图像变换法画图.同时教师也应指出用列表描点法也是可以的,让学生从中选出一种,最终确定用图像变换法画图.
由于指数函数的图像按 和 分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况 和 ,并分别以 和 为例画图.
具体操作时,要求学生做到:
(1) 指数函数 和 的图像要尽量准确(关键点的位置,图像的变化趋势等).
(2) 画出直线 .
(3) 的图像在翻折时先将特殊点 对称点 找到,变化趋势由靠近轴对称为逐渐靠近轴,而 的图像在翻折时可提示学生分两段翻折,在 左侧的先翻,然后再翻在 右侧的部分.
学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出
和 的图像.(此时同底的指数函数和对数函数画在同一坐标系内)如图:
2。 草图.
教师画完图后再利用投影仪将 和 的图像画在同一坐标系内,如图:
然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)
3。 性质
(1) 定义域:
(2) 值域:
由以上两条可说明图像位于 轴的右侧.
(3) 截距:令 得 ,即在 轴上的截距为1,与 轴无交点即以 轴为渐近线.
(4) 奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于 轴对称.
(5) 单调性:与 有关.当 时,在 上是增函数.即图像是上升的
当 时,在 上是减函数,即图像是下降的.
之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:
当 时,有 ;当 时,有 .
学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来.
最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的一致性)
对图像和性质有了一定的了解后,一起来看看它们的应用.
三.简单应用 (板书)
1。 研究相关函数的性质
例1。 求下列函数的定义域:
(1) (2) (3)
先由学生依次列出相应的不等式,其中特别要注意对数中真数和底数的条件限制.
2。 利用单调性比较大小 (板书)
例2。 比较下列各组数的大小
(1) 与 ; (2) 与 ;
(3) 与 ; (4) 与 .
让学生先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小.最后让学生以其中一组为例写出详细的比较过程.
三.巩固练习
练习:若 ,求 的取值范围.
四.小结
五.作业 略
板书设计
2.8对数函数
一。 概念
1. 定义 2.认识
二.图像与性质
1.作图方法
2.草图
图1 图2
3.性质
(1) 定义域(2)值域(3)截距(4)奇偶性(5)单调性
三.应用
1.相关函数的研究
例1 例2
练习
对数函数教案 篇四
对数函数教案模板
教学目标:
(一)教学知识点:1.对数函数的概念;2.对数函数的图象和性质。
(二)能力训练要求:1.理解对数函数的概念;2.掌握对数函数的图象和性质。
(三)德育渗透目标:1.用联系的观点分析问题;2.认识事物之间的互相转化。
教学重点:
对数函数的图象和性质
教学难点:
对数函数与指数函数的关系
教学方法:
联想、类比、发现、探索
教学辅助:
多媒体
教学过程:
一、引入对数函数的概念
由学生的预习,可以直接回答“对数函数的概念”
由指数、对数的定义及指数函数的'概念,我们进行类比,可否猜想有:
问题:1.指数函数是否存在反函数?
2.求指数函数的反函数.
①;
②;
③指出反函数的定义域.
3.结论
所以函数与指数函数互为反函数.
这节课我们所要研究的便是指数函数的反函数——对数函数.
二、讲授新课
1.对数函数的定义:
定义域:(0,+∞);值域:(-∞,+∞)
2.对数函数的图象和性质:
因为对数函数与指数函数互为反函数.所以与图象关于直线对称.
因此,我们只要画出和图象关于直线对称的曲线,就可以得到的图象.
研究指数函数时,我们分别研究了底数和两种情形.
那么我们可以画出与图象关于直线对称的曲线得到的图象.
还可以画出与图象关于直线对称的曲线得到的图象.
请同学们作出与的草图,并观察它们具有一些什么特征?
对数函数的图象与性质:
图象
性质(1)定义域:
(2)值域:
(3)过定点,即当时,
(4)上的增函数
(4)上的减函数
3.图象的加深理解:
下面我们来研究这样几个函数:,,,.
我们发现:
与图象关于X轴对称;与图象关于X轴对称.
一般地,与图象关于X轴对称.
再通过图象的变化(变化的值),我们发现:
(1)时,函数为增函数,
(2)时,函数为减函数,
4.练习:
(1)如图:曲线分别为函数,,,,的图像,试问的大小关系如何?
(2)比较下列各组数中两个值的大小:
(3)解关于x的不等式:
思考:(1)比较大小:
(2)解关于x的不等式:
三、小结
这节课我们主要介绍了指数函数的反函数——对数函数.并且研究了对数函数的图象和性质.
四、课后作业
课本P85,习题2.8,1、3
专题五对数函数 教案 篇五
戴氏精品堂
高一数学一对一
数学教研组
专题五
对数函数
一、目标认知
重点:对数式与指数式的互化及对数的性质,对数运算的性质与对数知识的应用;理解对数函数的定义,掌握对数函数的图象和性质。 难点:正确使用对数的运算性质;底数a对图象的影响及对数函数性质的作用。
二、知识要点梳理 知识点
一、对数及其运算
我们在学习过程遇到2x=4的问题时,可凭经验得到x=2的解,而一旦出现2x=3时,我们就无法用已学过的知识来解决,从而引入出一种新的运算——对数运算。 (一)对数概念:
1.如果,那么数b叫做以a为底N的对数,记作:logaN=b.其中a叫做对数的底数,N叫做真数。
2.对数恒等式:
3.对数
具有下列性质:
(1)0和负数没有对数,即;
(2)1的对数为0,即;
(3)底的对数等于1,即
。 (二)常用对数与自然对数
通常将以10为底的对数叫做常用对数,。以e为底的对数叫做自然对数,
。 (三)对数式与指数式的关系
由定义可知:对数就是指数变换而来的,因此对数式与指数式联系密切,且可以互相转化。它们的关系可由下图表示。
由此可见a,b,N三个字母在不同的式子中名称可能发生变化。 (四)积、商、幂的对数
已知
(1);
推广:
好的开始,是成功的一半!
(2);
(3)
。
(五)换底公式
同底对数才能运算,底数不同时可考虑进行换底,在a>0, a≠1, M>0的前提下有:
(1)
令 logaM=b, 则有ab=M, (ab)n=Mn,即, 即, 即:
。
(2) ,令logaM=b, 则有ab=M, 则有
即, 即,即
当然,细心一些的同学会发现(1)可由(2)推出,但在解决某些问题(1)又有它的灵活性。而且由(2)还可以得到一个重要的结论:
。
知识点
二、对数函数
1.函数y=logax(a>0,a≠1)叫做对数函数。
2.在同一坐标系内,当a>1时,随a的增大,对数函数的图像愈靠近x轴;当0
(1)对数函数y=logax(a>0,a≠1)的定义域为(0,+∞),值域为R
(2)对数函数y=logax(a>0,a≠1)的图像过点(1,0)
(3)当a>1时,
三、规律方法指导
容易产生的错误
(1)对数式logaN=b中各字母的取值范围(a>0 且a¹1, N>0, bÎR)容易记错。
(2)关于对数的运算法则,要注意以下两点:
一是利用对数的运算法则时,要注意各个字母的取值范围,即等式左右两边的对数都存在时等式才能成立。如:
坚持就是胜利!
戴氏精品堂
高一数学一对一
数学教研组
log2(-3)(-5)=log2(-3)+log2(-5)是不成立的,因为虽然log2(-3)(-5)是存在的,但log2(-3)与log2(-5)是不存在的。
二是不能将和、差、积、商、幂的对数与对数的和、差、积、商、幂混淆起来,即下面的等式是错误的:
loga(M±N)=logaM±logaN, loga(M·N)=logaM·logaN,
loga.
(3)解决对数函数y=logax (a>0且a¹1)的单调性问题时,忽视对底数a的讨论。
(4)关于对数式logaN的符号问题,既受a的制约又受N的制约,两种因素交织在一起,应用时经常出错。下面介绍一种简单记忆方法,供同学们学习时参考。
以1为分界点,当a, N同侧时,logaN>0;当a,N异侧时,logaN<0.
三、精讲精练
类型
一、指数式与对数式互化及其应用
1.将下列指数式与对数式互化:
(1);(2)
;(3)
;(4)
;(5)
;(6)
。
思路点拨:运用对数的定义进行互化。
解:(1);(2)
;(3)
;(4)
;(5)
;
(6)。
总结升华:对数的定义是对数形式和指数形式互化的依据,而对数形式和指数形式的互化又是解决问题的重要手段。
【变式1】求下列各式中x的值:
(1) (2)
(3)lg100=x (4)
思路点拨:将对数式化为指数式,再利用指数幂的运算性质求出x.
解:(1)
;
(2)
;
(3)10x=100=102,于是x=2;
(4)由
。 类型
二、利用对数恒等式化简求值
2.求值:
好的开始,是成功的一半!
解:
。
总结升华:对数恒等式中要注意格式:①它们是同底的;②指数中含有对数形式;③其值为真数。
【变式1】求的值(a,b,c∈R+,且不等于1,N>0)
思路点拨:将幂指数中的乘积关系转化为幂的幂,再进行运算。
解:
。
类型
三、积、商、幂的对数
3.已知lg2=a,lg3=b,用a、b表示下列各式。
(1)lg9 (2)lg64 (3)lg6 (4)lg12 (5)lg5 (6) lg15
解:(1)原式=lg32=2lg3=2b
(2)原式=lg26=6lg2=6a
(3)原式=lg2+lg3=a+b
(4)原式=lg22+lg3=2a+b
(5)原式=1-lg2=1-a
(6)原式=lg3+lg5=lg3+1-lg2=1+b-a
【变式1】求值
(1)
(2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2
解:
(1)
(2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+lg5=1
(3)原式=2lg5+lg2(1+lg5)+(lg2)2
=2lg5+lg2+lg2lg5+(lg2)2=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2.
类型
四、换底公式的运用
4.(1)已知logxy=a, 用a表示;
(2)已知logax=m, logbx=n, logcx=p, 求logabcx.
解:(1)原式=
;
(2)思路点拨:将条件和结论中的底化为同底。
方法一:am=x, bn=x, cp=x
∴,
坚持就是胜利!
戴氏精品堂
高一数学一对一
数学教研组
∴
;
方法二:
。
【变式1】求值:(1);(2);(3)。
解:
(1)
(2);
(3)法一:
法二:
。
总结升华:运用换底公式时,理论上换成以大于0不为1任意数为底均可,但具体到每一个题,一般以题中某个对数的底为标准,或都换成以10为底的常用对数也可。 类型
五、对数运算法则的应用
5.求值
(1) log89·log27
32(2)
(3)
(4)(log2125+log425+log85)(log1258+log254+log52)
解:(1)原式=。
(2)原式=
(3)原式=
(4)原式=(log2125+log425+log85)(log1258+log254+log52) 好的开始,是成功的一半!
【变式2】已知:log23=a, log37=b,求:log4256=?
解:∵
∴,
类型
六、函数的定义域、值域
求含有对数函数的复合函数的定义域、值域,其方法与一般函数的定义域、值域的求法类似,但要注意对数函数本身的性
质(如定义域、值域及单调性)在解题中的重要作用。
6、 求下列函数的定义域:
(1)
; (2)
。
思路点拨:由对数函数的定义知:x2>0,4-x>0,解出不等式就可求出定义域。
解:(1)因为x2>0,即x≠0,所以函数
;
(2)因为4-x>0,即x<4,所以函数
。
【变式2】函数y=f(2x)的定义域为[-1,1],求y=f(log2x)的定义域。
思路点拨:由-1≤x≤1,可得y=f(x)的定义域为[,2],再由
≤log2x≤2得y=f(log2x)的定义域为[,4]。
类型
七、函数图象问题
7.作出下列函数的图象:
(1) y=lgx, y=lg(-x), y=-lgx; (2) y=lg|x|; (3) y=-1+lgx.
解:(1)如图(1); (2)如图(2); (3)如图(3)。
类型
八、对数函数的单调性及其应用
利用函数的单调性可以:①比较大小;②解不等式;③判断单调性;④求单调区间;⑤求值域和最值。要求同学们:一是牢
固掌握对数函数的单调性;二是理解和掌握复合函数的单调性规律;三是树立定义域优先的观念。
8、 比较下列各组数中的两个值大小:
坚持就是胜利!
戴氏精品堂
高一数学一对一
数学教研组
(1)log23.4,log28.
5(2)log0.31.8,log0.32.7
(3)loga5.1,loga5.9(a>0且a≠1)
思路点拨:由数形结合的方法或利用函数的单调性来完成。
(1)解法1:画出对数函数y=log2x的图象,横坐标为3.4的点在横坐标为8.5的点的下方,所以,log23.4 解法2:由函数y=log2x在R+ 上是单调增函数,且3.4<8.5,所以log23.4 解法3:直接用计算器计算得:log23.4≈1.8,log28.5≈3.1,所以log23.4 (2)与第(1)小题类似,log0.3x在R+上是单调减函数,且1.8log0.32.7; (3)注:底数是常数,但要分类讨论a的范围,再由函数单调性判断大小。 解法1:当a>1时,y=logax在(0,+∞)上是增函数,且5.1<5.9,所以,loga5.1 当0 解法2:转化为指数函数,再由指数函数的单调性判断大小,令b1=loga5.1,则,令b2=loga5.9,则 当a>1时,y=ax在R上是增函数,且5.1<5.9 所以,b1 当0 在R上是减函数,且5.1<5.9 所以,b1>b2,即 。 9、 证明函数 上是增函数。 思路点拨:此题目的在于让学生熟悉函数单调性证明通法,同时熟悉利用对函数单调性比较同底数对数大小的方法。 证明:设,且x1 则 又∵y=log2x在上是增函数 即f(x1) ∴函数f(x)=log2(x2+1)在上是增函数。 【变式1】已知f(logax)= (a>0且a≠1),试判断函数f(x)的单调性。 解:设t=logax(x∈R+, t∈R)。当a>1时,t=logax为增函数,若t1 ∴ f(t1)-f(t2)=, 好的开始,是成功的一半! ∵ 0 当0 10.求函数y= (-x2+2x+3)的值域和单调区间。 解:设t=-x2+2x+3,则t=-(x-1)2+4.∵ y= t为减函数,且0 ∴ y≥=-2,即函数的值域为[-2,+∞。 再由:函数y= (-x2+2x+3)的定义域为-x2+2x+3>0,即-1 ∴ t=-x2+2x+3在-1,1)上递增而在[1,3)上递减,而y= t为减函数。 ∴ 函数y= (-x2+2x+3)的减区间为(-1,1),增区间为[1,3. 类型 九、函数的奇偶性 11、 判断下列函数的奇偶性。 (1) (2) 。 (1)思路点拨:首先要注意定义域的考查,然后严格按照证明奇偶性基本步骤进行。 解:由 所以函数的定义域为:(-1,1)关于原点对称 又 所以函数 是奇函数; 总结升华:此题确定定义域即解简单分式不等式,函数解析式恒等变形需利用对数的运算性质。说明判断对数形式的复合函数的奇偶性,不能轻易直接下结论,而应注意对数式的恒等变形。 (2)解: 由 坚持就是胜利! 戴氏精品堂 高一数学一对一 数学教研组 所以函数的定义域为R关于原点对称 又 即f(-x)=-f(x);所以函数 。 总结升华:此题定义域的确定可能稍有困难,函数解析式的变形用到了分子有理化的技巧,要求掌握。 类型 十、对数函数性质的综合应用基础达标 一、选择题 1、下列说法中错误的是( ) A.零和负数没有对数 B.任何一个指数式都可化为对数式 C.以10为底的对数叫做常用对数 D.以e为底的对数叫做自然对数 2、有以下四个结论:①lg(lg10)=0;②ln(lne)=0;③若10=lgx,则x=10;④若e=lnx,则x=e2,其中 正确的是( ) A.①③ B.②④ C.①② D.③④ 3、下列等式成立的有( ) ①;② ;③ ;④ ;⑤ ; A.①② B.①②③ C.②③④ D.①②③④⑤ 4、已知,那么用 表示是( ) A.B. C. D. 5、(2011 天津文6)设,,,则( ). A. B. C. D. 6、已知,且等于( ) A. B. C. D. 7、函数的图象关于( ) A.轴对称 B.轴对称 C.原点对称 D.直线 对称 8、函数的定义域是( ) 好的开始,是成功的一半! A. B. C. D. 9、函数的值域是( ) A. B. C. D. 10、下列函数中,在上为增函数的是( ) A. B. C. D. 二、填空题 11.3的_________次幂等于8. 12、若,则x=_________;若 log2003(x2-1)=0,则x=_________. 13、(1)=_______; (2) 若_______; (3)=_______; (4) _______; (5) =_______; 14、函数的定义域是__________. 15、函数 是___________(奇、偶)函数。 三、解答题 16、已知函数,判断的奇偶性和单调性。 坚持就是胜利! 戴氏精品堂 高一数学一对一 数学教研组 17、已知函数, (1)求的定义域; (2)判断的奇偶性。 18.已知函数的定义域为,值域为,求的值。 答案与解析 基础达标 一、选择题 1.B 2.C 3.B 4.A 5. D 6.D 7.C 8.A 9.C 10.D 二、填空题 11、; 12.-13,; 13. (1)1;(2)12;(3)-3;(4)2;(5)4; 14、 由 解得; 15、奇, 为奇函数。 三、解答题 16、(1), ∴是奇函数 (2),且, 则, ∴为增函数。 17、(1)∵,∴, 好的开始,是成功的一半! 又由得, ∴ 的定义域为。 (2)∵ m.gaokaobaba.com 的定义域不关于原点对称,∴ 为非奇非偶函数。 18、由,得,即 ∵,即 由,得,由根与系数的关系得,解得 。 坚持就是胜利! 案例背景 对数函数是函数中又一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础. 案例叙述: (一).创设情境 (师):前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数. 反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数. (提问):什么是指数函数?指数函数存在反函数吗? (学生): 是指数函数,它是存在反函数的. (师):求反函数的步骤 (由一个学生口答求反函数的过程): 由 得 .又 的值域为 , 所求反函数为 . (师):那么我们今天就是研究指数函数的反函数-----对数函数. (二)新课 1.(板书) 定义:函数 的反函数 叫做对数函数. (师):由于定义就是从反函数角度给出的。,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么? (教师提示学生从反函数的三定与三反去认识,学生自主探究,合作交流) (学生)对数函数的定义域为 ,对数函数的值域为 ,且底数 就是指数函数中的 ,故有着相同的限制条件 . (在此基础上,我们将一起来研究对数函数的图像与性质.) 一、指数函数 1.形如yax(a0,a0)的函数叫做指数函数,其中自变量是x,函数定义域是R,值域是(0,). 2、指数函数yax(a0,a0)恒经过点(0,1). 3.当a1时,函数yax单调性为在R上时增函数; 当0a1时,函数yax单调性是在R上是减函数. 二、对数函数 1. 对数定义: 一般地,如果a(a0且a1)的b次幂等于N, 即abN,那么就称b是以a为底N的对数,记作 logaNb,其中,a叫做对数的底数,N叫做真数。 b 着重理解对数式与指数式之间的相互转化关系,理解,aN与blogaN所表示的是a,b,N三个量之间的同一个关系。 2. 对数的性质: (1)零和负数没有对数;(2)loga10;(3)logaa1 这三条性质是后面学习对数函数的基础和准备,必须熟练掌握和真正理解。 3. 两种特殊的对数是:①常用对数:以10作底 log10N简记为lgN ②自然对数:以e作底(为无理数),e= 2.718 28…… , loge4.对数恒等式(1)logaabb;(2)alogaNN简记为lnN. N b 要明确a,b,N在对数式与指数式中各自的含义,在指数式aN中,a是底数,b是指数,N是幂;在对数式blogaN中,a是对数的底数,N是真数,b是以a为底N的对数,虽然a,b,N在对数式与指数式中的名称不同,但对数式与指数式有密切的联系:求b对数logaN就是求aN中的指数,也就是确定a的多少次幂等于N。 三、幂函数 1.幂函数的概念:一般地,我们把形如yx的函数称为幂函数,其中x是自变量,是常数; 注意:幂函数与指数函数的区别. 2.幂函数的性质: (1)幂函数的图象都过点(1,1); (2)当0时,幂函数在[0,)上单调递增;当0时,幂函数在(0,)上 单调递减; (3)当2,2时,幂函数是 偶函数 ;当1,1,3,时,幂函数是 奇函数 . 四、精典范例 例 1、已知f(x)=x·( 31311); x221(1)判断函数的奇偶性; (2)证明:f(x)>0. 【解】:(1)因为2-1≠0,即2≠1,所以x≠0,即函数f(x)的定义域为{x∈R|x≠0} 。 x x11x32x1)=·x又f(x)=x(x, 2212123(x)32x1x32x1··f(-x)==f(x), 22x122x1所以函数f(x)是偶函数。 x32x10. (2)当x>0时,则x>0,2>1,2-1>0,所以f(x)=·x2213 x x又f(x)=f(-x),当x0. 综上述f(x)>0. a·2xa2(xR),若f(x)满足f(-x)=-f(x)。 例 2、已知f(x)=x21(1)求实数a的值;(2)判断函数的单调性。 【解】:(1)函数f(x)的定义域为R,又f(x)满足f(-x)= -f(x), 所以f(-0)= -f(0),即f(0)=0.所以 2a20,解得a=1, 22(2x12x2)2x112x21(2)设x1 3、已知f(x)=log2(x+1),当点(x,y)在函数y=f(x)的图象上运动时,点(,)在函数y=g(x)的图象上运动。 (1)写出y=g(x)的解析式; (2)求出使g(x)>f(x)的x的取值范围; (3)在(2)的范围内,求y=g(x) -f(x)的最大值。 【解】:(1)令 xy32xys,t,则x=2s,y=2t. 32因为点(x,y)在函数y=f(x)的图象上运动,所以2t=log2(3s+1), 11log2(3s+1),所以g(x)= log2(3s+1) 221(2)因为g(x)>f(x)所以log2(3x+1)>log2(x+1) 2即t=3x1(x1)23即0x1 (3)最大值是log23- 2x10x2. 例 4、已知函数f(x)满足f(x-3)=lg2x62(1)求f(x)的表达式及其定义域; (2)判断函数f(x)的奇偶性; (3)当函数g(x)满足关系f[g(x)]=lg(x+1)时,求g(3)的值。 解:(1)设x-3=t,则x=t+3, 所以f(t)=lg2 2 t3t3lg t36t3x3x30,得x3. 解不等式x3x3x3所以f(x)-lg,定义域为(-∞,-3)∪(3,+∞)。 x3所以f(x)=lg x3x3x3lglg=-f(x)。 x3x3x3x3(3)因为f[g(x)]=lg(x+1),f(x)=lg, x3(2)f(-x)=lg所以lgg(x)3g(x)3lg(x1), 所以g(x)3g(x)3x1, (g(x)3g(x)30,x10)。 解得g(x)=3(x2)x, 所以g(3)=5 教学目标 1. 在指数函数及反函数概念的基础上,使学生掌握对数函数的概念,能正确描绘对数函数的图像,掌握对数函数的性质,并初步应用性质解决简单问题. 2. 通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想. 3. 通过对数函数有关性质的研究,培养学生观察,分析,归纳的思维能力,调动学生学习的积极性. 教学重点,难点 重点是理解对数函数的定义,掌握图像和性质. 难点是由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质. 教学方法 启发研讨式 教学用具 投影仪 教学过程 一。 引入新课 今天我们一起再来研究一种常见函数.前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数. 反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数. 提问:什么是指数函数?指数函数存在反函数吗? 由学生说出 是指数函数,它是存在反函数的.并由一个学生口答求反函数的过程: 由 得 .又 的'值域为 , 所求反函数为 . 那么我们今天就是研究指数函数的反函数-----对数函数. 一。 引入新课 一。 对数函数的概念 1. 定义:函数 的反函数 叫做对数函数。 由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发。如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么? 教师可提示学生从反函数的三定与三反去认识,从而找出对数函数的定义域为 ,对数函数的值域为 ,且底数 就是指数函数中的 ,故有着相同的限制条件 . 在此基础上,我们将一起来研究对数函数的图像与性质。 二。对数函数的图像与性质 (板书) 1. 作图方法 提问学生打算用什么方法来画函数图像?学生应能想到利用互为反函数的两个函数图像之间的关系,利用图像变换法画图。同时教师也应指出用列表描点法也是可以的,让学生从中选出一种,最终确定用图像变换法画图。 由于指数函数的图像按 和 分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况 和 ,并分别以 和 为例画图。 具体操作时,要求学生做到: (1) 指数函数 和 的图像要尽量准确(关键点的位置,图像的变化趋势等). (2) 画出直线 . (3) 的图像在翻折时先将特殊点 对称点 找到,变化趋势由靠近轴对称为逐渐靠近轴,而 的图像在翻折时可提示学生分两段翻折,在左侧的先翻,然后再翻在 右侧的部分。 学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出 和 的图像。(此时同底的指数函数和对数函数画在同一坐标系内)如图: 2. 草图。 教师画完图后再利用投影仪将 和 的图像画在同一坐标系内,如图: 然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明) 3. 性质 (1) 定义域: (2) 值域: 由以上两条可说明图像位于 轴的右侧。 (3) 截距:令 得 ,即在 轴上的截距为1,与 轴无交点即以 轴为渐近线。 (4) 奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于 轴对称。 (5) 单调性:与 有关。当 时,在 上是增函数。即图像是上升的 当 时,在 上是减函数,即图像是下降的。 之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况: 学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来。 最后教师在总结时,强调记住性质的关键在于要脑中有图。且应将其性质与指数函数的性质对比记忆。(特别强调它们单调性的一致性) 对图像和性质有了一定的了解后,一起来看看它们的应用。 它山之石可以攻玉,以上就是差异网为大家带来的9篇《对数函数教案》,您可以复制其中的精彩段落、语句,也可以下载DOC格式的文档以便编辑使用。数学教案-对数函数 篇六
指数函数、对数函数、幂函数教案 篇七
高中数学对数函数教案 篇八
高中数学对数函数教案 篇九
推荐作文:
- ·永远的歌声-记叙文作文800字
- ·我的梦想演讲稿【优秀5篇】
- ·庐山的云雾-暑假游记650字
- ·我和书的故事-小学生记叙文450字
- ·珍惜时间,从今天开始-优秀记叙文600字
- ·政教工作计划最新6篇
- ·挥之不去的事儿——看鸟-记叙文作文600字
- ·读《三国演义》有感-记叙文650字
- ·珍爱生命的演讲稿精彩3篇
- ·奋力向终点奔去-记叙作文550字
- ·求职个人简历(通用5篇)
- ·word页眉和页脚怎么设置(最新3篇)
- ·幼儿园中班科学活动教案【优秀5篇】
- ·不一样的付出-记叙作文700字
- ·英语论文答辩技巧【优秀9篇】
- ·“家庭暴力”-小学记叙文200字
- ·中秋追忆似水流-中秋节作文800字
- ·麦田-高二记叙文1000字
- ·爸爸我想对您说-记叙文800字
- ·勇敢的对不起-记叙文350字
- ·农业水利工程防洪度汛方案(优秀5篇)
- ·我真想当发明家-理想作文400字
- ·感谢-抒情记叙文350字
- ·观长津湖有感-记叙文800字
- ·登高-三年级游记作文450字
- ·实习报告心得体会(精彩7篇)
- ·美丽的弧线-五年级记叙作文700字
- ·读书伴我成长-励志作文800字
- ·文明礼仪教育论文【精选3篇】
- ·不忘初心,驱车前行