小学六年级数学下册教案(优秀4篇)

时间:2023-07-15 07:54:35 | 来源:啦啦作文网

在教学工作者实际的教学活动中,总归要编写教案,教案是教学活动的依据,有着重要的地位。那么写教案需要注意哪些问题呢?差异网为您精心收集了4篇《小学六年级数学下册教案》,如果能帮助到亲,我们的一切努力都是值得的。

七年级数学下册教案 篇一

【学习目标】

1、经历探索具体情境中两个变量之间关系的过程,获得探索变量之间关系的体验,进一步发展符号感。

2、在具体情境中理解什么是变量、自变量、因变量,并能举出反映变量之间关系的例子。

3、能从表格中获得变量之间关系的信息,能用表格表示变量之间的关系,并根据表格中的资料尝试对变化趋势进行初步的预测。

【学习方法】自主探究与小组合作交流相结合。

【学习重难点】重点:能从表格的数据中分清什么是变量,自变量、因变量以及因变量随自变量的变化情况。

难点:对表格所表达的两个变量关系的理解。

【学习过程】

模块一 预习反馈

一、学习准备

1、我们生活在一个变化的世界中,很多东西都在悄悄地发生变化。

你能从生活中举出一些发生变化的例子吗?

教材精读

1、请同学们观察思考,逐一回答下面的问题:

根据上表回答下列问题:

(1)支撑物高度为70厘米时,小车下滑时间是多少?

(2)如果用h表示支撑物高度,t表示小车下滑时间,随着h逐渐变大,t的变化趋势是什么?

(3)h每增加10厘米,t的变化情况相同吗?

(4)估计当h=110厘米时,t的值是多少,你是怎样估计的?

(5)随着支撑物高度h的变化,还有哪些量发生变化?哪些量始终不发生变化?

在小车下滑的过程中:

支撑物的高度h和小车下滑的时间t都在变化,它们都是 。其中小车下滑的时间t随支撑物的高度h的变化而变化。支撑物的高度h是 ,小车下滑的时间t是 。

在这一变化过程中,小车下滑的距离(木板的长度)一直 变化。像这种在变化过程中 的量叫做 。

我国从1949年到1999年的人口统计数据如下(精确到0.01亿):

(1)如果用x表示时间,y表示我国人口总数,那么随着x的变化,y的变化趋势是什么?

(2)X和y哪个是自变量?哪个是因变量?

(3)从1949年起,时间每向后推移10年,我国人口是怎样的变化?

(4)你能根据此表格预测20xx年时我国人口将会是多少?

在人口统计数据中:

时间和人口数都在变化,它们都是 。其中人口数随时间的变化而变化。时间是 ,人口数是 。

归纳:借助表格,我们可以表示因变量随自变量的变化而变化的情况

模块二 合作探究

1、研究表明,当每公顷钾肥和磷肥的施用量一定时,土豆的产量与氮肥的施用量有如下关系:

(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?

(2)当氮肥的施用量是101千克/公顷时,土豆的产量是多少?如果不施氮肥呢?

(3)据表格中的数据,你认为氮肥的施用量是多少时比较适宜?说说你的理由。

(4)粗略说一说氮肥的施用量对土豆产量的影响。

模块三 形成提升

某电影院地面的一部分是扇形,座位按下列方式设置:

(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?

(2)第5排、第6排各有多少个座位?

(3)第n排有多少个 座位?请说明你的理由。

模块四 小结反思

一、本课知识

1、 变量、自变量、因变量:在某一变化过程中不断变化的量,叫做如果一个变量y随另一个变量x的变化而变化,则把x叫做 ,y叫做 。即先发生变化的量叫做 ,后发生变化或者随自变量的变化而变化的量叫做 。

2、常量:略

二、我的困惑

七年级下册数学教案 篇二

【知识讲解】

一、本讲主要学习内容

1、代数式的意义

2、列代数式的注意点

3、代数式值的意义

其中列代数式是重点,也是难点。

下面讲述一下这三点知识的主要内容。

1、代数式的意义

用基本的运算符号(包括加、减、乘、除以及后面所要学的乘方、开方)将数及 表示数的字母连接而成的式子叫代数式。单个的数字或字母也叫代数式。如:5,a, 4x, ab, x+2y, , a2等

2、列代数式的注意点

⑴在代数式中出现的乘号“×”,通常写作“· ”或者省略不写。如3×a可写作3· a或3a, 2×(x+y)可以写作2·(x+y)或2(x+y)。

⑵数字与数字相乘时乘号,仍然用“×”,不宜用“· ”,更不能省略不写。

⑶数字写在字母的前面。

⑷在代数式中出现除法运算时,一般按照分数的写法来写, 如s÷t写作 。

⑸代数式中带分数与字母相乘时,应写成假分数与字母相乘的形式,如 应写作 。

(6)两个代数式相乘,应该用分数形式表示。

3、代数式值的意义

用数值代替代数式里的字母,按照代数式指明的运算,计算出的结果,就叫做代数式的值。

二、典型例题

例1 填空

①棱长是acm 的正方体的体积是___cm3。

②温度由t°c下降2°c后是___°c。

③产量由m千克增长10%,就达到___千克。

④a和b 的倒数和是___。

⑤a和b的和的倒数是___。

解: ① a3 ②(t-2) ③(1+10%)m ④ ⑤

说明: ⑴列代数式的关键在于仔细审题,弄清题意,正确找出题中的数量关系和运算顺序,对一些容易混淆的说法,要仔细进行对比,对一些比较复杂的数量关系,可先分段考虑,要正确地使用括号。

⑵像a3 ,(1+10%)m 这样的式子后在可直接写单位,像t-2这样的式子,需写单位时,要将整个式子用括号括起来。

例2、用代数式表示

⑴被4整除得 m的数

⑵被2除商为 a余1的数

⑶两数的平均数

⑷a和b两数的平方差与这两数平方和的商

⑸一项工程,甲独做需x天,乙独做需y天完成,甲乙两人合做完成的天数。 ⑹某人先用v1千米/时速度行完全路程的一半,又用v2千米/时的速度行完另一半, 若全路程长为a千米,用代数式表示此人行完全路程的平均速度。

⑺个位数字是8,十位数字是 b 的两位数。

解: ⑴4m ⑵2a+1 ⑶设这两个数分别为a、b、则平均数为 。

⑷ ⑸ ⑹ ⑺10b+8

分析说明:

⑴数a除以数b,除得的商正好是整数,而没有余数,我们称a能被b整除。

⑵能被2整除的数叫偶数,不能被2整除的数叫奇数。两个连续奇数,若较小的是n,则较大的是n +2 。

⑶对于题⑶中两数没有给出,为说明其一般性。可先设这两个数为a, b;用字母表示数时,在同一个问题中,不同的数要用不同的字母表示。

⑷题⑷中的a,b两数的平方是a2-b2,不能颠倒,也不能写成(a-b)2。

⑸题⑸中甲乙两人的工作效率分别是 和 ,所以甲乙两人合作完成的时间是 即 。

⑹平均速度=

所以平均速度为 解答本题容易错写成 ,这主要是概念不清造成的。

题⑺中主要应清楚自然数的十进制表示方法: n=an×10n+an-1×10n-1+……+a1×10+a0 即一个自然数总可以用它各个数位上的数字来表示。

例3说出下列代数式的意义。

⑴ 3a+2 ⑵ 3(a+2) (3)

(4) a- (5)(a-b)2 (6)a2-b2

分析:说出代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点。

①不含括号的代数式习惯从左到右按运算顺序读,如(1)小题3a+2读作“a的3倍与2的和”;

②含括号的'代数应该把括号里的代数式看作一个整体,按运算结果来读,如(2)小题3(a+2)读作“a与2的和的3倍”;

③由于分数线具有除法和括号的双重作用,应该把分子与分母看成一个整体来读。

解:(1)a的3倍与2的和;

(2)a与2的和的3倍;

(3)a与b的差除以c的商;

(4)a与b除以c的差;

(5)a与b的差的平方;

(6)a、b的平方差。

例4、当x=7,y=4, z=0时,求代数式x ( 2x-y+3z)的值。

解:x (2x-y+3 z)=7×( 2×7-4+3×0)=7×(14-4)=70

说明:⑴由比例题可以看出,求代数式值的一般步骤是:①代入 ②计算⑵在代数式中,数字与字母之间,字母与字母之间的乘号是省略不写的。而当代入数据求值时,都变成了数字相乘,原来省略的乘号“×”应补上。

【一周一练】

1、选择题

(1)下列各式中,属于代数式的有( )个。

, s= ah, 5× , -y, x-2=y, a-b, 3x>y

a、2 b、3 c、4 d、5

(2)下列代数式,书写正确的是( )

a、2 b、m· n c、 mn d、(m+n)÷2

(3)用代数式表示“a的 乘以b减去c的积”是( )

a、 ab-c b、 a(b-c) c、 a( b-c) d、

(4)用语言叙述代数式 ,表述不正确的是( )

a、比a的倒数小2的数; b、a与2的差的倒数

c、1除以a减去2的商 d、比a小2的数的倒数

2、判断题

⑴n除m用代数式可表示成 ( )

⑵三个连续的奇数,中间一个是n,其余两个分别是n-2和n+2( )

⑶如果n是偶数,则紧跟在n后面的两个连续奇数分别是n+1,n+3( )

3、填空题

⑴每本练习本是0.3元,买a本练习本需__元。

⑵小明有5元钱,买了a支铅笔,每支铅笔是0.2元,则小明还剩__元。

⑶被3整除得n 的数是__。

⑷个位上的数是a,十位上的数是个位上的数的2倍少3的两位数是_。

⑸加工一批零件共m个,乙先加工n个零件后,甲单独再做3天才完成任务,则甲平均每天加工零件__个。

⑹一种小麦磨成面粉后,重量减少数15%, b千克小麦磨成面粉后,面粉的重量是__千克。

⑺一个长方形的长是a,宽是长的 还多1,这个长方形的周长是__

⑻a、b两个码头相距s千米,一轮船从a码头到b码头的速度是a千米/时,返回的速度比从a码头到b码头快2千米/时,这艘船在a,b两码头间往返一次,共需__小时。

4、求下列代数式的值。

⑴ 其中a=2

⑵当 时,求代数式 的值。

5、填表

x

y

x+y

x-y

xy

5

15

6、某班级里男生人数比女生人数的 多16人,男生人数是a,问a的代数式表示:⑴女生人数。 ⑵该班学生总数;当a=25时,求该班学生总数。

七年级数学下册教案 篇三

教学目标:

1、知道有理数加法的意义和法则

2、会用有理数加法法则正确地进行有理数的加法运算

3、经历有理数加法法则的探究过程,体会分类和归纳的数学思想方法

教学重点:有理数加法则的探索及运用

教学难点:异号两数相加的法则的理解及运用

教学过程:

一、创设情境

展示足球赛图片,你知道足球赛中“净胜球”是怎么回事吗?

(学生口答,教师介绍净胜球的算法:只要把各场比赛的结果相加就可以得到,由此揭示课题。)

二、探求新知

1、甲、乙两队进行足球比赛,

(1)、如果上半场赢了3球,下半场又赢了2球,那么全场累计净胜几球?

(2)、如果上半场赢了3球,下半场输了2球,那么全场累计净胜几球?

足球比赛中赢球个数与输球个数是一对相反意义的量。若规定赢球为正,输球为负,例如赢3球记为“+3”,输2球记为“-2”,你能把上述结果用加法算式表示出来吗?

(学生根据生活经验得到两种情况下的净胜球数,从而列出算式:(+3)+(+2)= +5;(+3)+(-2)= +1,教师板书。)

(3)、除了上面所说的“赢了再赢”,“先赢后输”,你还能说出其它可能的几种情况并用加算式表示吗?

(引导学生联系生活实际思考输赢球其它可能的情况,尽可能完整地说出所有的可能,由此感受两个有理数相加的。各种情况,让学生自由发言,相互补充,教师板书算式:(-3)+(+2)= -1,(-3)+(-2)= -5,(-3)+0= -3,0+(+2)=+2,教师还可根据学生回答情况补充:上半场赢了3球,下半场输了3球;上半场打平,下半场也打平,最后的净胜球情况,由学生说出结果并列出算式:(+3)+(-3)= 0,0+0=0 )

2、你能举出一些运用有理数加法的实际例子吗?

(学生列举实例并根据具体意义写出算式)

3、学生活动:

(1)、把笔尖放在数轴原点处,先向正方向移动3个单位长度,再向正方向移动2个单位长度,这时笔尖的位置表示什么数?你能用数轴和加法算式表示以上过程及结果吗?

(2)、把笔尖放在数轴原点个单位长度,再向负方向移动2个单位长度,这时笔尖的位置表示什么数?你能用数轴和加法算式表示以上过程及结果吗?

(3)、你还能再做一些类似的活动,并写出相应的算式吗?

(教师示范活动(1)的操作过程,学生列出算式并完成(2)(3),得到一组算式,教师板书。这一活动目的是让学生从“形”的角度,直观感受有理数的加法法则。)

4、归纳法则:

观察上述算式,和小学学过的加法运算有什么区别?你能归纳出有理数的加法法则吗?

(由前面所学的内容学生已经知道:有理数由符号和绝对值两部分组成,所以两个有理数的相加时,确定和时也需要分别确定和的符号和绝对值,教师可引导学生对照情境中输赢球的情况分别探索和的符号和绝对值如何确定,学生相互交流,自由发言,不断完善。通过探索有理数加法法则的过程,学生体会分类和归纳的数学思想方法。)

5、例题精讲:

例1 、计算

(1)、 (-5)+(-3) (2)、(-8)+(+2);; (3)、(+6)+(-4)

(4)、 5+(-5); (5)、 0+(-2); (学生口答计算结果,并对照法则说说是如何确定和的符号和绝对值的,教师板书解题过程,让学生体会“运算有据”。)

解:(1)、(-5)+(-3)

= -(5+3) (同号两数相加,取相同的符号,并把绝对值相减)

= -8

(2)、(-8)+(+2)

= -(8-2) (异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。)

= -6

(4)、5+(-5);

=0 (互为相反的两数之和为0)

6、训练巩固:

1、 p33练一练2

(学生利用扑克完成本题,通过游戏进一步巩固有理数加法法则,体现“做中学”的新课程理念。)

7、延伸拓展:

(1)、一个数是2的相反数,另一个数的绝对值是5,求这两个数的和

(2)、在小学里,计算两个数相加时,它们的和总是小于任何一个加数,学了有理数的加法法则后,你认为这个结论还成立吗?请你举例说明

(这两题都具有一定的挑战性,第(1)题可让学生进一步体会分类的数学思想方法。第(2)题具有开放性,可让学生在探索的过程中进一步理解法则。)

三、课堂小结:

学生回顾本节课所学内容,谈谈自己对有理数加法法则的理解及如何进行有理数加法运算。

四、布置作业:

1、课本p41第1题

2、列举一些生活中运用有理数加法的实际例子,并相互交流。

七年级数学下册教案 篇四

七年级数学教案

1.2 一元一次不等式组的解法

2.2二元一次方程组的解法

2.3二元一次方程组的应用(1)

第10教案

教学目标

1.会列出二元一次方程组解简单应用题,并能检验结果的合理性。

2.知道二元一次方程组是反映现实世界量之间相等关系的一种有效的数学模型。

3.引导学生关注身边的数学,渗透将来未知转达化为已知的辩证思想。

教学重点

1.列二元一次方程组解简单问题。

2.彻底理解题意

教学难点

找等量关系列二元一次方程组。

教学过程

一、情境引入。

小刚与小玲一起在水果店买水果,小刚买了3千克苹果,2千克梨,共花了18.8元。小玲买了2千克苹果,3千克梨,共花了18.2元。回家路上,他们遇上了好朋友小军,小军问苹果、梨各多少钱1千克?他们不讲,只讲各自买的几千克水果和总共的钱,要小军猜。聪明的同学们,小军能猜出来吗?

二、建立模型。

1.怎样设未知数?

2.找本题等量关系?从哪句话中找到的?

3.列方程组。

4.解方程组。

5.检验写答案。

思考:怎样用一元一次方程求解?

比较用一元一次方程求解,用二元一次方程组求解谁更容易?

三、练习。

1.根据问题建立二元一次方程组。

(1)甲、乙两数和是40差是6,求这两数。

(2)80班共有64名学生,其中男生比女生多8人,求这个班男生人数,女生人数。

(3)已知关于求x、的方程,

是二元一次方程。求a、b的值。

2.P38练习第1题。

四、小结。

小组讨论:列二元一次方程组解应用题有哪些基本步骤?

五、作业。

P42。习题2.3A组第1题。

后记:

2.3二元一次方程组的应用(2)

第11教案

教学目标

1.会列二元一次方程组解简单的应用题并能检验结果的合理性。

2.提高分析问题、解决问题的能力。

3.体会数学的应用价值。

教学重点

根据实际问题列二元一次方程组。

教学难点

1.找实际问题中的相等关系。

2.彻底理解题意。

教学过程

一、引入。

本节课我们继续学习用二元一次方程组解决简单实际问题。

二、新课。

例1. 小琴去县城,要经过外祖母家,头一天下午从她家走到个祖母家里,第二天上午,从外外祖母家出发匀速前进,走了2小时、5小时后,离她自己家分别为13千米、25千米。你能算出她的速度吗?还能算出她家与外祖母家相距多远吗?

探究: 1. 你能画线段表示本题的数量关系吗?

2.填空:(用含S、V的代数式表示)

设小琴速度是V千米/时,她家与外祖母家相距S千米,第二天她走2小时趟的路程是______千米。此时她离家距离是______千米;她走5小时走的路程是______千米,此时她离家的距离是________千米。

3.列方程组。

4.解方程组。

5.检验写出答案。

讨论:本题是否还有其它解法?

三、练习。

1.建立方程模型。

(1)两在相距280千米,一般顺流航行需14小时,逆流航行需20小时,求船在静水中速度,水流的速度。

(2)420个零件由甲、乙两人制造。甲先做2天后,乙加入合作再做2天完成,乙先做2天,甲加入合作,还需3天完成。问:甲、乙每天各做多少个零件?

2.P38练习第2题。

3.小组合作编应用题:两个写一方程组,另两人根据方程组编应用题。

四、小结。

本节课你有何收获?

五、作业。

它山之石可以攻玉,以上就是差异网为大家带来的4篇《小学六年级数学下册教案》,希望对您的写作有所帮助,更多范文样本、模板格式尽在差异网。