《圆的面积》教学设计(优秀4篇)

时间:2023-06-19 13:21:00 | 来源:啦啦作文网

作为一名人民教师,有必要进行细致的教案准备工作,教案是保证教学取得成功、提高教学质量的基本条件。教案应该怎么写呢?下面是差异网整理的4篇《《圆的面积》教学设计》,如果能帮助到您,差异网将不胜荣幸。

教学内容: 篇一

九年义务教育六年制小学教科书《数学》第十一册,圆的面积。

《圆的面积》教学设计 篇二

义务教育课程标准实验教科书第十一册P69~71例1、例2。

【教学目标】

1、认知目标

使学生理解圆面积的含义;掌握圆的面积公式,并能运用所学知识解决生活中的简单问题。

2、过程与方法目标

经历圆的面积公式的推导过程,体验实验操作,逻辑推理的学习方法。

3、情感目标

引导学生进一步体会“转化”的数学思想,初步了解极限思想;体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。

【教学重点】:掌握圆的面积的计算公式,能够正确地计算圆的面积。

【教学难点】:理解圆的面积计算公式的推导。

【教学准备】:相应课件;圆的面积演示教具

【教学过程】

一、情境导入

出示场景——《马儿的困惑》

师:同学们,你们知道马儿吃草的大小是一个什么图形呀?

生:是一个圆形。

师:那么,要想知道马儿吃草的大小,就是求圆形的什么呢?

生:圆的面积。

师:今天我们就一起来学习圆的面积。(板书课题:圆的面积)

[设计意图:通过“马儿的困惑”这一场景,让学生自己去发现问题,同时使学生感悟到今天要学习的内容与身边的生活息息相关、无处不在,同时了解学习任务,激发学生学习的兴趣。]

二、探究合作,推导圆面积公式

1、渗透“转化”的数学思想和方法。

师:圆的面积怎样计算呢?计算公式又是什么?你们想知道吗?

我们先来回忆一下平行四边形的面积是怎样推导出来?

生:沿着平行四边形的高切割成两部分,把这两部分拼成长方形师:哦,请看是这样吗?(教师演示)。

生:是的,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,因为长方形的面积等于长乘宽,所以平行四边形的面积等于底乘高 。

师:同学们对原来的知识掌握得非常好。刚才我们是把一个图形先切,然后拼,就转化成别的图形。这样有什么好处呢?

生:这样就把一个不懂的问题转化成我们可以解决的问题。

师:对,这是我们在学习数学的过程当中的一种很好的方法。今天,我们就用这种方法把圆转化成已学过的图形。

师:那圆能转化成我们学过的什么图形?你们想知道吗?(想)

2、演示揭疑。

师:(边说明边演示)把这个圆平均分成16份,沿着直径来切,变成两个半圆,拼成一个 近似的平行四边形。

师:如果老师把这个圆平均分成32份,那又会拼成一个什么图形?我们一起来看一看(师课件演示)。

师:大家想象一下,如果老师再继续分下去,分的份数越多,每一份就会越小,拼成的图形就会越接近于什么图形?(长方形)

[设计意图:通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出新的问题可以转化成旧的知识,利用旧知识解决新的问题。并借助电脑课件的演示,生动形象地展示了化曲为直的剪拼过程。]

3、学生合作探究,推导公式。

(1)讨论探究,出示提示语。

师:下面请同学们看老师给的三个问题,请你们四人一组,拿出课前准备的学具拼一拼,观察、讨论完成这三个问题:

①转化的过程中它们的(形状)发生了变化,但是它们的(面积)不变?

②转化后长方形的长相当于圆的(周长的一半),宽相当于圆的(半径)?

③你能从计算长方形的面积推导出计算圆的面积的公式吗?尝试用“因为……所以……”类似的关联词语。

师:你们明白要求了吗?(明白)好,开始吧。

学生汇报结果,师随机板书。

同学们经过观察,讨论,寻找出圆的面积计算公式,真了不起。

(2)师:如果圆的半径用r表示,那么圆周长的一半用字母怎么表示?

(3)揭示字母公式。

师:如果用S表示圆的面积,那么圆的面积计算公式就是:S=πr2

(4)齐读公式,强调r2=r×r(表示两个r相乘)。

从公式上看,计算圆的面积必须知道什么条件?在计算过程中应先算什么?

[设计意图:通过小组合作、讨论使学生进一步明确拼成的长方形与圆之间的对应关系,有效地突破了本课的难点。]

三、运用公式,解决问题

1.教学例1。

师:同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?(出示例1)知道圆的半径,让学生根据圆的面积计算公式计算圆的面积。

预设:

教师应加强巡视,发现问题及时指导,并提醒学生注意公式、单位使用是否正确。

2.如果我们知道一个圆形花坛的直径是20m,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!

3.求下面各圆的面积。

[设计意图:学生已经掌握了圆面积的计算公式,可大胆放手让学生尝试解答,从而促进了理论与实践的结合,培养了学生灵活运用所学知识解决实际问题的能力。]

3.教学例2。

师:(出示例2)这是一张光盘,这张光盘由内、外两个圆构成。光盘的银色部分是一个圆环。请同学们小声地读一读题。开始!

师:怎样求这个圆环的面积呢?大家商量商量,想想办法吧!

师:找到解决问题的方法了吗?

师:好的,就按同学们想到的方法算一算这个圆环的面积吧!

教师继续对学困生加强巡视,如果还有问题的学生并给予指导。

[设计意图:学生已经掌握了圆面积的计算公式,掌握环形面积计算,教师可以引导学生分析理解,大胆放手让学生尝试解答,培养了学生运用所学知识解决实际问题的能力。]

四、课堂作业

1、教材P69页“做一做”第2小题。

2、判断题

让学生先判断,并讲一讲错误的原因。

3、填空题

复习圆的半径、直径、周长、面积之间的相互关系。

4、教材P70页练习十六第2小题。

5、完成课件练习(知道圆的周长求面积)

老师强调学生认真审题,并引导学生要求圆的面积必须知道哪一个条件(半径),知道圆的周长就如何求出圆的面积,老师注意辅导中下学生。

五、课堂总结

师:同学们,通过这节课的学习,你有什么收获?

六、布置作业

小学数学圆的面积教案 篇三

教学目标

(1)知识与技能目标:学生结合具体情境认识组和图形的特征,掌握计算组合图形的面积的方法,并能准确掌握和计算简单组合图形的面积。

(2)过程与方法目标:通过自主合作,培养学生独立思考、合作探究的意识。

(3)情感态度与价值观目标:学生在解决实际问题的过程中,进一步体验图形和生活的联系,感受平面图形的学习价值,提高学习好数学的自信心。

教学重难点

教学重点:组合图形的认识及面积计算。

教学难点:对组合图形的分析。

教学工具

多媒体课件,各种基本图形纸片

教学过程

一、创设情境,谈话引入

同学们,在中国古代的建筑中我们经常会见到“外放内圆”“外圆内方”的设计,下面请同学们欣赏几组图片。(生欣赏完后)师提问:这些图片美吗?(生:美)

师:这些图片的设计中包含了我们学过的哪些平面图形?(生:圆、正方形、长方形等)

师:这些不同的几何图形拼在一起能构成精美的图案,给我们以美的享受,这说明我们的数学和现实生活联系密切。今天,我们就来学习会有圆的组合图形的面积。(板书课题)二、提出问题,自主探究

1、教师出示例3的两幅图并出示自学提示出示自学提示:

(1)上面两幅图有什么不同之处?

(2)右图中的正方形的对角线和圆得直径有什么关系?

(3)上图中两个圆的半径都是r,你能求出正方形和圆之间的半部分的面积吗?

2、请同学们带着问题认真阅读P69-70页的内容,独立思考自学提示中的问题,若有困难可以小组内讨论。(自学时间:4分钟)三、师生联动,合作探究1、汇报交流,师生互动

生汇报问题(1):这两幅图都是由圆和正方形组成,左图是外圆内方,右图是外方内圆。

生汇报问题(2):右图中的正方形的对角线和圆得直径相等。

生汇报问题(3):左图阴影面积=正方形的面积-圆的面积列式为:S正=2×2=4(m2 ) S圆=3.14×12=3.14(m2 ) 4-3.14=0、86(m2 )左图:圆的面积减去正方形的面积( 1/2 ×2×1)×2=2(m2 ) 3.14×12=3.14(m2 ) 3.14-2=1.14(m2 )

师:同学们做的很好!可我又有问题了,若两个圆的半径都是r,那结果又是如何呢?生派代表回答:

左图;(2r)-3.14r =0.86r

右图:3.14r-( 1/2 ×2r×r)×2=1.14r当r=1m时,和前面的结果完全一致

答:左图中正方形和圆之间的面积是0、86m、右图中圆与正方形之间的面积是1.14m。

四、总结引导,知识生成这节课你有什么收获?

师顺便对生进行德育教育:在我们今后的人生道路中,我们为人处事,必须能屈能伸,可方可圆,外在大度圆融,内在正直公正。五、科学训练,提高能力1、出示教材P70做一做2、完成教材P72第9题六、堂清作业

七、作业布置P73第10、11、

课后小结

这节课你有什么收获?

课后习题

1、出示教材P70做一做

2、完成教材P72第9题

板书

含有圆的组合图形的面积

左图:S正=2×2=4(m2 )右图:( 1/2 ×2×1)×2=2(m2 )

S圆=3.14×12=3.14(m2 ) 3.14×12=3.14(m2 )

4-3.14=0.86(m2 ) 3.14-2=1.14(m2 )

圆的面积教案 篇四

教学目标

1.使学生理解圆面积公式的推导过程,掌握求圆面积的方法并能正确计算;

2.培养学生动手操作的能力,启发思维,开阔思路;

3.渗透初步的`辩证唯物主义思想。

教学重点和难点

圆面积公式的推导方法。

教学过程设计

(一)复习准备

我们已经学习了圆的认识和圆的周长,谁能说说圆周长、直径和半径三者之间的关系?

已知半径,圆周长的一半怎么求?

(出示一个整圆)哪部分是圆的面积?(指名用手指一指。)

这节课我们一起来学习圆的面积怎么计算。

(板书课题:圆的面积)

(二)学习新课

1.我们以前学过的三角形、平行四边形和梯形的面积公式,都是转化成已知学过的图形推导出来的,怎样计算圆的面积呢?我们也要把圆转化成已学过的图形,然后推导出圆面积的计算公式。

决定圆的大小的是什么?(半径)所以,分割圆时要保留这个数据,沿半径把圆分成若干等份。

展示曲变直的变化图。

2.动手操作学具,推导圆面积公式。

为了研究方便,我们把圆等分成16份。圆周部分近似看作线段,其

用自己的学具(等分成16份的圆)拼摆成一个你熟悉的、学过的平面图形。

思考:

(1)你摆的是什么图形?

(2)所摆的图形面积与圆面积有什么关系?

(3)图形的各部分相当于圆的什么?

(4)你如何推导出圆的面积?

(学生开始动手摆,小组讨论。)

指名发言。(在幻灯前边说边摆。)

①拼出长方形,学生叙述,老师板书:

②还能不能拼出其它图形?

学生可以拼出:

等等

刚才,我们用不同思路都能推导出圆面积的公式是:S=r2。这几种思路的共同特点都是将圆转化成已学过的图形,并根据转化后的图形与圆面积的关系推导出面积公式。

例1 一个圆的半径是4厘米,它的面积是多少平方厘米?

S=r2=3.1442=3.1416=50.24(平方厘米)

答:它的面积是50.24平方厘米。

想一想;求圆面积S应知道什么?如果给d和C,又怎样求圆面积?

(三)巩固反馈

1.求下面各圆的面积。

r=2(单位:分米) d=6(单位:分米)

2.选择题。

用2米长的绳子把小羊拴在草地上的木框上,羊吃到地上的草的最大面积是多少?

(1)3.1422=12.56(米)

(2)3.1422=12.56(平方米)

(3)3.1432=28.26(平方米)

3.思考题:

已知正方形的面积是18平方米,求圆的面积。(如图)

课堂教学设计说明

1.使学生运用迁移的方法,把新知识转化为旧知识,把圆转化成已经学过的图形。

2.在面积公式推导过程中,老师介绍分割圆的方法,展示由曲变直的过程,然后引导学生动手操作,小组讨论,从各个角度推导出圆面积公式。培养学生动手操作,口头表达和逻辑思维的能力,渗透了极限和转化思想。

3.安排了坡度适当、由易到难的练习题,使学生由浅入深地掌握了知识,形成了技能。同时,还注意培养学生逻辑推理的能力。

读书破万卷下笔如有神,以上就是差异网为大家带来的4篇《《圆的面积》教学设计》,希望对您有一些参考价值,更多范文样本、模板格式尽在差异网。