有理数的乘法数学教案优秀9篇

时间:2023-06-23 08:47:40 | 来源:啦啦作文网

作为一位优秀的人民教师,时常会需要准备好教案,教案是保证教学取得成功、提高教学质量的基本条件。那要怎么写好教案呢?下面是小编精心为大家整理的9篇《有理数的乘法数学教案》,希望能够对困扰您的问题有一定的启迪作用。

有理数的乘法数学教案 篇一

教学目标

1。理解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性;

2。能根据有理数乘法法则熟练地进行有理数乘法运算,使学生掌握多个有理数相乘的积的符号法则;

3。三个或三个以上不等于0的有理数相乘时,能正确应用乘法交换律、结合律、分配律简化运算过程;

4。通过有理数乘法法则及运算律在乘法运算中的运用,培养学生的运算能力;

5。本节课通过行程问题说明有理数的乘法法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。

教学建议

(一)重点、难点分析

重点:

是否能够熟练进行有理数的乘法运算。依据有理数的乘法法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础。有理数的乘法运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。

难点:

理解有理数的乘法法则。有理数的乘法法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的符号和积的绝对值的方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。

(二)知识结构

(三)教法建议

1。有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。

2。两数相乘时,确定符号的依据是“同号得正,异号得负”。绝对值相乘也就是小学学过的算术乘法。

3。基础较差的同学,要注意乘法求积的。符号法则与加法求和的符号法则的区别。

4。几个数相乘,如果有一个因数为0,那么积就等于0。反之,如果积为0,那么,至少有一个因数为0。

5。小学学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。

6。如果因数是带分数,一般要将它化为假分数,以便于约分。

教学设计示例

有理数的乘法(第一课时)

教学目标

1。使学生在了解有理数的乘法意义基础上,理解有理数乘法法则,并初步理解有理数乘法法则的合理性;

2。通过有理数的乘法运算,培养学生的运算能力;

3。通过教材给出的行程问题,认识数学来源于实践并反作用于实践。

教学重点和难点

重点:依据有理数的乘法法则,熟练进行有理数的乘法运算;

难点:有理数乘法法则的理解。

课堂教学过程设计

一、从学生原有认知结构提出问题

1。计算(—2)+(—2)+(—2)。

2。有理数包括哪些数?小学学习四则运算是在有理数的什么范围中进行的?(非负数)

3。有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题)[

4。根据有理数加减运算中引出的新问题主要是负数加减,运算的关键是确定符号问题,你能不能猜出在有理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么?(负数问题,符号的确定)

二、师生共同研究有理数乘法法则

问题1水库的水位每小时上升3厘米,2小时上升了多少厘米?

解:3×2=6(厘米)①

答:上升了6厘米。

问题2水库的水位平均每小时下降3厘米,2小时上升多少厘米?

解:—3×2=—6(厘米)②

答:上升—6厘米(即下降6厘米)。

引导学生比较①,②得出:

把一个因数换成它的相反数,所得的积是原来的积的相反数。

这是一条很重要的结论,应用此结论,3×(—2)=?(—3)×(—2)=?(学生答)

把3×(—2)和①式对比,这里把一个因数“2”换成了它的相反数“—2”,所得的积应是原来的积“6”的相反数“—6”,即3×(—2)=—6。

把(—3)×(—2)和②式对比,这里把一个因数“2”换成了它的相反数“—2”,所得的积应是原来的积“—6”的相反数“6”,即(—3)×(—2)=6。

此外,(—3)×0=0。

综合上面各种情况,引导学生自己归纳出有理数乘法的法则:

两数相乘,同号得正,异号得负,并把绝对值相乘;

任何数同0相乘,都得0。

继而教师强调指出:

“同号得正”中正数乘以正数得正数就是小学学习的乘法,有理数中特别注意“负负得正”和“异号得负”。

用有理数乘法法则与小学学习的乘法相比,由于介入了负数,使乘法较小学当然复杂多了,但并不难,关键仍然是乘法的符号法则:“同号得正,异号得负”,符号一旦确定,就归结为小学的乘法了。

因此,在进行有理数乘法时,需要时时强调:先定符号后定值。

三、运用举例,变式练习

例某一物体温度每小时上升a度,现在温度是0度。

(1)t小时后温度是多少?

(2)当a,t分别是下列各数时的结果:

①a=3,t=2;②a=—3,t=2;

②a=3,t=—2;④a=—3,t=—2;

教师引导学生检验一下(2)中各结果是否合乎实际。

课堂练习

1。口答:

(1)6×(—9);(2)(—6)×(—9);(3)(—6)×9;

(4)(—6)×1;(5)(—6)×(—1);(6)6×(—1);

(7)(—6)×0;(8)0×(—6);

2。口答:

(1)1×(—5);(2)(—1)×(—5);(3)+(—5);

(4)—(—5);(5)1×a;(6)(—1)×a。

这一组题做完后让学生自己总结:一个数乘以1都等于它本身;一个数乘以—1都等于它的相反数。+(—5)可以看成是1×(—5),—(—5)可以看成是(—1)×(—5)。同时教师强调指出,a可以是正数,也可以是负数或0;—a未必是负数,也可以是正数或0。

3。填空:

(1)1×(—6)=______;(2)1+(—6)=_______;

(3)(—1)×6=________;(4)(—1)+6=______;

(5)(—1)×(—6)=______;(6)(—1)+(—6)=_____;

(9)|—7|×|—3|=_______;(10)(—7)×(—3)=______。

4。判断下列方程的解是正数还是负数或0:

(1)4x=—16;(2)—3x=18;(3)—9x=—36;(4)—5x=0。

四、小结

今天主要学习了有理数乘法法则,大家要牢记,两个负数相乘得正数,简单地说:“负负得正”。

五、作业

1。计算:

(1)(—16)×15;(2)(—9)×(—14);(3)(—36)×(—1);

(4)100×(—0。001);(5)—4。8×(—1。25);(6)—4。5×(—0。32)。

2。填空(用“>”或“<”号连接):

(1)如果a<0,b<0,那么ab________0;

(2)如果a<0,b<0,那么ab_______0;

(3)如果a>0时,那么a____________2a;

(4)如果a<0时,那么a__________2a。

探究活动

问题:桌上放7只茶杯,杯口全部朝上,每次翻转其中的4只,能否经过若干次翻转,把它们翻成杯口全部朝下?

答案:“±1”将告诉你:不管你翻转多少次,总是无法使这7只杯口全部朝下。道理很简单,用“+1”表示杯口朝上,“—1”表示杯口朝下,问题就变成:“把7个+1每次改变其中4个的符号,若干次后能否都变成—1?”考虑这7个数的乘积,由于每次都改变4个数的符号,所以它们的乘积永远不变(为+1)。而7个杯口全部朝下时,7个数的乘积等于—1,这是不可能的。

道理竟是如此简单,证明竟是如此巧妙,这要归功于“±1”语言。

初中数学《有理数的乘法》教学设计 篇二

教学目的:

(一)知识点目标:有理数的乘法运算律。

(二)能力训练目标:

1、经历探索有理数乘法的运算律的过程,发展观察、归纳的能力。

2、能运用乘法运算律简化计算。

(三)情感与价值观要求:

1、在共同探索、共同发现、共同交流的过程中分享成功的喜悦。

2、在讨论的过程中,使学生感受集体的力量,培养团队意识。

教学重点:

乘法运算律的运用。

教学难点:

乘法运算律的运用。

教学方法:

探究交流相结合。

创设问题情境,引入新课

[活动1]

问题1:有理数的加法具有交换律和结合律,在以前学过的范围内乘法交换律、结合律,以及乘法对加法的分配律都是成立的,那么在有理数的范围内,乘法的这些运算律成立吗?

问题2:计算下列各题:

(1)(-7)×8;

(2)8×(-7);

(5)[3×(-4)]×(-5);

(6)3×[(-4)×(-5)];

[师生]由学生自主探索,教师可参与到学生的讨论中。

像前面那样规定有理数乘法法则后,乘法的交换律和结合律与分配律在有理数乘法中仍然成立。我们可以通过问题2来检验。(略)

[师]同学们自己采用上面的方法来探究一下分配律在有理数范围内成立吗?

[生]例如:5×[3十(-7)]和5×3十5×(-7);(略)

[师](-5)×(3-7)和(-5)×3-5×7的结果相等吗?

(注意:(-5)×(3-7)中的3-7应看作3与(-7)的和,才能应用分配律。否则不能直接应用分配律,因为减法没有分配律。)

讲授新课:

[活动2]用文字语言和字母把乘法交换律、结合律、分配律表达出来。

应得出:

1、一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。

2、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

3、一般地,一个数同两个数的和相乘,等于这个数分别同这两个数相乘,再把积相加。

[活动3][师生]教师引导学生讨论、交流,从中体会学习的快乐。

3、用简便方法计算:

[活动4]

练习(教科书第42页)

课时小结:

这节课我们学习乘法的运算律及它们的运用,使我们体验到了掌握一般的正常运算外,还要灵活运用运算律,能简便的一定要简便,这样做既快又准。

课后作业:课本习题1.4的第7题(3)、(6)。

活动与探究:

用简便方法计算:

(1)6.868×(-5)+6.868×(一12)+6.868×(+17)

(2)[(4×8)×25一8]×125

七年级数学有理数的乘法教案及教学设计 篇三

一、知识与技能

(1)能确定多个因数相乘时,积的符号,并能用法则进行多个因数的乘积运算。

(2)能利用计算器进行有理数的乘法运算。

二、过程与方法

经历探索几个不为0的数相乘,积的符号问题的过程,发展观察、归纳验证等能力。

三、情感态度与价值观

培养学生主动探索,积极思考的学习兴趣。

教学重、难点与关键

1.重点:能用法则进行多个因数的乘积运算。

2.难点:积的符号的确定。

3.关键:让学生观察实例,发现规律。

教具准备

投影仪。

四、 教学过程

1.请叙述有理数的乘法法则。

2.计算:(1)│-5│(-2); (2)(-) (3)0(-99.9)。

五、新授

1.多个有理数相乘,可以把它们按顺序依次相乘。

例如:计算:1(-1)(-7)=-(-7)=-2(-7)=14;

又如:(+2)[(-78)]=(+2)(-26)=-52.

我们知道计算有理数的乘法,关键是确定积的符号。

观察:下列各式的积是正的还是负的?

(1)234 (2)234(-4)

(3)2(-3)(-4)(4)(-2)(-3)(-4)(-5)。

易得出:(1)、(3)式积为负,(2)、(4)式积为正,积的符号与负因数的个数有关。

教师问:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?

学生完成思考后,教师指出:几个不是0的数相乘,积的符号由负因数的个数决定,与正因数的个数无关,当负因数的个数为负数时,积为负数;当负因数的个数为偶数时,积为正数。

2.多个不是0的有理数相乘,先由负因数的个数确定积的符号再求各个绝对值的积。

初中数学《有理数的乘法》教学设计 篇四

一、教材分析

有理数的乘法是继有理数的加减法之后的又一种基本运算。它既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础。对后续知识的学习也是至关重要的。

二、学情分析

对于初一学生来说,他们虽已通过学习有理数的加减法具备了初步探究问题的能力,对符号问题也有了一定的认识,但是对知识的主动迁移能力还比较弱,因此,只要引导学生确定了“积”的符号,实质上就是小学算术中数的乘法运算了,突破了有理数乘法的符号法则这个难点,则对于有理数乘法的运算学生就不难掌握了。

三、教学目标(核心素养立意)

1、使学生理解有理数乘法的意义,掌握有理数乘法法则,并能准确地进行有理数的乘法运算。

2、初步培养学生发现问题、分析问题、和解决问题的能力。

3、通过教学,渗透化归、分类讨论等数学思想方法,激发学生学习数学、应用数学的兴趣。

4、传授知识的同时,注意培养学生良好的学习习惯和勇于探索的精神。

四、教学重、难点

重点:有理数的乘法法则。

难点:有理数乘法的符号法则

五、教学策略

我在本节课的教学中采用诱思探究式教学法,并应用多媒体现代教学手段,以学生为主体,通过引导启发、自主探究、点拨归纳完成教学任务,实现教学目标。

六、教学过程(设计为七个环节)

1、复习导入创设情境

我首先出示几个相同负数和的计算题,利用乘法的意义很自然地引出负数与正数相乘的新内容,以形成知识的迁移。进而引入本节课题,以问题引领来激发学生求知欲。

2、师生互动探究新知

要求学生自主学习课本内容,完成课文中的填空。我给与学生充足的时间和空间。通过自主学习,小组合作,教师点拨引导学生从有理数分为正数、零、负数三类的角度,区分出有理数乘法的情况有五种:(正×正、正×0、正×负、负×0、负×负)引导学生根据以上实例的运算结果,从积的符号和绝对值两方面准确地归纳出有理数的乘法的符号法则和有理数乘法的运算法则。(板书:法则)(确定有理数乘法运算的两步模型:先定符号,在求绝对值)

这样设计的目的是

1、构造这组有规律的算式让学生通过观察,来发现算式和结果在符号、绝对值方面的关系,找到乘法结果的符号规律,突破本节课的难点。同时又突出了本节课的教学重点。

2、通过比较、分析、概括、讨论、展示,渗透分类讨论和从特殊归纳一般的数学思想和方法,提高学生整合知识的能力。使学生知道”如何观察”“如何发现规律”。

3、分析法则掌握实质

(有了以上的认识)通过设置问题4,让学生带着以上的结论,认真观察(—5)×(—3)这个算式,首先确定积的符号(同号得正,先定号),再确定积的绝对值(5×3=15,再求值)。第二小题让学生仿照第一小题填空、解答,理解法则的实质,真正掌握本节课的重点。这样设计是为了再现知识的形成过程,避免单纯的记忆,使学习过程成为一种再创造的过程。

4、解决问题综合运用

通过习题(小试牛刀)的计算,既巩固了有理数乘法的法则,又明确了倒数的定义,(板书:倒数-乘积是1的两个数互为倒数)。在有理数范围内仍有意义。本环节通过让学生独立思考、分组讨论,完成填空,使学生有效的巩固重点化解难点。

5、体验成功享受快乐

利用摸牌游戏,抓住学生对竞争充满兴趣的心理特征,激发学生的学习兴趣,用抢答题的形式,使学生的眼、耳、脑、口得到充分的调动,并让学生在抢答中体验成功,享受快乐。通过学生参与活动,调动学生学习的积极性。同时让学生通过本环节进一步理解有理数乘法法则,并在实际问题中进一步培养学生应用数学的意识,体现数学的应用价值。这也是数学核心素养的要求。

6、总结收获畅谈体会

在课堂临近尾声时,我鼓励学生从数学知识、数学方法和数学情感等方面进行自我评价。让学生充分发表自己的感受,并相互补充。及时有效的回顾小结,进一步明确本节课的主要内容、思想和方法。这样设计的目的是培养学生的归纳能力和语言表达能力,以及善于反思的好习惯。让学生品尝收获的喜悦,坚定今后学习数学的信心。

7、布置作业巩固深化

七、课后反思

在课堂教学过程中,我始终坚持以观察为起点,以问题为主线,以能力培养为核心的宗旨;遵照教师为主导,学生为主体,训练为主线的教学原则;遵循由已知到未知、由浅入深、由易到难的认知规律;采用诱思探究教学法,把课堂还给学生,让他们主动去参与,去探究,去分析。通过创设、引导、渗透、归纳等活动让学生在不知不觉中掌握重点,突破难点,发展能力,养成良好的数学学习习惯。更好的促进学生全面、持續、和谐的发展。本节课的设计一定还存在不少的纰漏和缺陷,敬请各位同仁批评指正。谢谢大家!

有理数的减法教案 篇五

教学目标

1、了解有理数加法的意义,理解有理数加法法则的合理性;

2、能运用有理数加法法则,正确进行有理数加法运算;

3、经历探索有理数加法法则的过程,感受数学学习的方法;

4、通过积极参与探究性的数学活动,体验数学来源于实践并为实践服务的思想,激发学生的学习兴趣,同时培养学生探究性学习的能力

教学重点

能运用有理数加法法则,正确进行有理数加法运算

教学难点

经历探索有理数加法法则的过程,感受数学学习的方法

教学过程(教师)

一、创设情境

小学里,我们学过加法和减法运算,引进负数后,怎样进行有理数的加法和减法运算呢?

1、试一试

甲、乙两队进行足球比赛,如果甲队在主场赢了3球,在客场输了2球,那么两场比赛后甲队净胜1球

你能把上面比赛的过程及结果用有理数的算式表示出来吗?

做一做:比赛中胜负难料,两场比赛的结果还可能有哪些情况呢?动动手填表

2、我们知道,求两次输赢的总结果,可以用加法来解答,请同学们先个人研究,后小组交流

你还能举出一些应用有理数加法的实际例子吗?

二、探究归纳

1、把笔尖放在数轴的原点,沿数轴先向左移动5个单位长度,再向右移动3个单位长度,这时笔尖停在“”的位置上

用数轴和算式可以将以上过程及结果分别表示为:

算式:________________________

2、把笔尖放在数轴的原点,沿数轴先向右移动3个单位长度,再向左移动2个单位长度,这时笔尖停在“1”的位置上

用数轴和算式可以将以上过程及结果分别表示为:

算式:________________________

3、把笔尖放在数轴的原点,沿数轴先向左移动3个单位长度,再向左移动2个单位长度,这时笔尖的位置表示什么数?

请用数轴和算式分别表示以上过程及结果:

算式:________________________

仿照上面的做法,请在数轴上呈现下面的算式所表示的笔尖运动的过程和结果

4、观察、思考、讨论、交流并得出有理数加法法则

讨论:两个有理数相加时,和的符号及绝对值怎样确定?你能找到有理数相加的一般方法吗?

《2.5有理数的加法与减法》课时练习

1、七年级(3)班同学李亮在一次班级运动会上参加三级跳远比赛,共跳了5次,他第一次跳了6m,第二次比第一次多跳0.1m,第三次比第二次少跳0.3m,第四次比第三次多跳0.5m,第五次比第四次少跳了0.4m.他那一次跳得最远?成绩是多少?

2、一只小虫从某点P出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+5,﹣3,+10,﹣8,﹣6,+12,﹣10

(1)通过计算说明小虫是否回到起点P

(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间

2.5有理数的加法与减法:同步练习

1、高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:km)

+17,-9,+7,-15,-3,+11,-6,-8,+5,+16

(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?

(2)养护过程中,最远外离出发点有多远?

(3)若汽车耗油量为0.09升/km,则这次养护共耗油多少升?

有理数的乘法数学教案 篇六

教材分析

“数的运算”是“数与代数”学习领域的重要内容。有理数的乘法运算是加法运算的另一种运算形式,它也是今后学习有理数的除法、乘方及混合运算的基础。因此本节内容具有承前启后的重要作用。

学情分析

1.让学生亲身经历将实际问题抽象成数学问题的过程,增加他们对问题的感性认识。

2.通过观察、归纳,提高学生的理性认识。

3.培养学生学会表达、学会倾听的良好品质。

教学目标

1.知识技能:

(1)经历探索有理数乘法运算的过程,归纳有理数乘法运算法则。

(2)掌握有理数乘法法则,能解决简单的的实际问题。

2.数学思考:

通过自主合作探究经历探索有理数运算的过程,发展学生观察、归纳、猜想等能力。

3.问题解决:

通过自主探索和合作交流,发展学生逆向思维及化归思想。

4.情感态度价值观:

通过经历探索有理数乘法运算的过程感受数学与生活的紧密联系,提高学生对知识的应用能力以及勇于探索、敢于发言的个性品质。

教学重点和难点

教学重点是:有理数的乘法法则的理解和运用。

教学难点是:使学生体会有理数乘法法则规定的合理性;探究出确定两个负数相乘和多个有理数相乘的符号符号规律。

初中数学《有理数的乘法》教学设计 篇七

一、知识与技能

(1)能确定多个因数相乘时,积的符号,并能用法则进行多个因数的乘积运算。

(2)能利用计算器进行有理数的乘法运算。

二、过程与方法

经历探索几个不为0的数相乘,积的符号问题的过程,发展观察、归纳验证等能力。

三、情感态度与价值观

培养学生主动探索,积极思考的学习兴趣。

教学重、难点与关键

1、重点:能用法则进行多个因数的乘积运算。

2、难点:积的符号的确定。

3、关键:让学生观察实例,发现规律。

教具准备:投影仪。

四、教学过程

1、请叙述有理数的乘法法则。

2、计算:

(1)│-5│(-2);

(2)(-)

(3)0(-99.9)。

五、新授

1、多个有理数相乘,可以把它们按顺序依次相乘。

例如:计算:1(-1)(-7)=-(-7)=-2(-7)=14;

又如:(+2)[(-78)]=(+2)(-26)=-52.

我们知道计算有理数的乘法,关键是确定积的符号。

观察:下列各式的`积是正的还是负的?

(1)234

(2)234(-4)

(3)2(-3)(-4)

(4)(-2)(-3)(-4)(-5)。

易得出:(1)、(3)式积为负,(2)、(4)式积为正,积的符号与负因数的个数有关。

教师问:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?

学生完成思考后,教师指出:几个不是0的数相乘,积的符号由负因数的个数决定,与正因数的个数无关,当负因数的个数为负数时,积为负数;当负因数的个数为偶数时,积为正数。

2、多个不是0的有理数相乘,先由负因数的个数确定积的符号再求各个绝对值的积。

有理数的乘法数学教案 篇八

一、知识与技能

经历探索有理数乘法法则过程,掌握有理数的乘法法则,能用法则进行有理数的乘法。

二、过程与方法

经历探索有理数乘法法则的过程,发展学生归纳、猜想、验证等能力。

三、情感态度与价值观

培养学生积极探索精神,感受数学与实际生活的联系。

教学重、难点与关键

1.重点:应用法则正确地进行有理数乘法运算。

2.难点:两负数相乘,积的符号为正与两负数相加和的符号为负号容易混淆。

3.关键:积的符号的确定。

教具准备

投影仪。

四、教学过程

一、引入新课

在小学,我们学习了正有理数有零的乘法运算,引入负数后,怎样进行有理数的乘法运算呢?

五、新授

课本第28页图1.4-1,一只蜗牛沿直线L爬行,它现在的位置恰在L上的点O。

(1)如果蜗牛一直以每分2cm的速度向右爬行,3分后它在什么位置?

(2)如果蜗牛一直以每分2cm的速度向左爬行,3分后它在什么位置?

(3)如果蜗牛一直以每分2cm的速度向右爬行,3分前它在什么位置?

(4)如果蜗牛一直以每分2cm的速度向左爬行,3分前它在什么位置?

分析:以上4个问题涉及2组相反意义的量:向右和向左爬行,3分钟后与3分钟前,为了区分方向,我们规定:向左为负,向右为正;为区分时间,我们规定:现在前为负,现在后为正,那么(1)中2cm记作+2cm,3分后记作+3分。

有理数的乘法教案 篇九

学习目标:

1、知识目标:了解有理数乘法法则的合理性,掌握有理数的乘 法法则,熟练运用有理数的法则进行准确运算。

2、能力目标:通过对问题的变式探索,培养自己观察、分析、抽象、概括的能力。

3、情感目标:培养积极思考和勇于探索的精神,形成良好的学习习惯。

学习重点、难点

重点:有理数乘法运算法则的推导及熟练运用。

难点:有理数乘法运算中积的符号的确定。

学习过程

一、预习导航

1、在小学我们已经接触了乘法,那什么叫乘法呢?

求几个 的运算,叫乘法。

一个数同0相乘,得 0。

2、请你列举几道小学学过的乘法算式。

二、合作探究、展示交流

1、 问题1:森林里住着一只蜗牛,每天都要离开家去寻找食物,如果蜗牛一直以每分钟2cm 的速度向右爬行,那么3分钟后蜗牛在什么位置?

规定:向右为正,现在之后为正。

3分钟后蜗牛应在 o点的 ( )边 ( )cm处。

可以列式为:(+2)(+3) =

问题2:如果蜗 牛一直以每分钟2cm的速度向左爬行,那么3分钟后蜗牛在什么位置?

规定:向右为正,现在之后为正。

3分钟后蜗牛应在o点的 ( )边 ( )cm处。

可以列式为:

问题3:如果蜗牛一直以每分钟2cm的速度向右爬行,那么3分钟前蜗牛在什么位置?

规定:向右为正,现在之后为正。

3分钟前蜗牛应在o点的( )边 ( )cm处。

可以表示为:

问题4:如果蜗牛一直以每分钟2cm的速度向左爬行,那么3分钟前蜗牛在什么位置?

规定:向右为正,现在之后为正。

3分钟前蜗牛应在o点的( )边( )cm处。

可以表示为:

2、观察这四个式子:

(+2)(+ 3)=+6 (-2)(-3)=+6

(-2)(+3)=-6 (+2)(-3)=-6

根据你对有理数乘法的思考,总结填空:

正数乘正数积为__数:负数乘负数积为__数:

负数乘正数积为__数:正数乘负数积为__数:

乘积 的绝对值等于各乘数绝对值的_____。

?思考:当一个因数为0时,积是多少?

3、试着总结一下有理数乘法法则吧:

两数相乘,同号得 ,异号得 ,并把绝对值 。

任何数同0相乘,都得 。

三、小试牛刀。

1、你能确定下列乘积的符号吗?

3 7 积的符号 为 ;(-3)7积的符号 为 ;

3(-7)积的符号 为 ;(-3)(-7)积的符号 为 。

2先阅读,再填空:

(-5)x(-3)。同号两数相乘

(-5)x(-3)=+( )得正

5 x 3= 15把绝对值相乘

所以 (-5) x (-3)= 15

填空:(-7)x 4____________________

(-7)x 4 = -( )___________

7x 4 = 28_____________

所以 (-7)x 4 = ____________

[例1]计算:

(1)(-5) (2)(-5)

(3)(-6)(-0.45) (4)(-7)0=

解:(1)(-5)(-6)=+(56)=+30=30

请同学们仿照上述步骤计算(2)(3)(4)。

(2)(-5) 6 = =

(3)(-6)(-0.45)= =

(4)(-7)0=

让我们来总结求解步骤:

两个数相乘,应先确定积的 ,再确定积的 。

四、巩固练习

1、 小 组口算比赛,看谁更棒

(1)3(-4) (2)2(-6) (3)(-6)2

(4)6(-2) (5)(-6)0 (6)0(-6)

2、仔细计算。,注意积的'符号和绝对值。

(1)(-4)0.25 (2)(-0.5)(-2) (3) (- )

(4)(-2)(- ) (5)(- )(- ) (6)(- )5

3、用正负数表示气温的变化量,上升为正,下降为负。登山队攀登一座山峰,每登高1千米,气温的变化量为-6℃,攀登3千米后,气温有什么变化?

五分钟过关检测

1、下列说法错误的是()

A.一个数同0相乘,仍得0B.一个数同1相乘,仍得原数

C.如果两个数的乘积等于1,那么这两个数互为相 反数

D.一个数同-1相乘, 得原数的相反数

2、在-2,3,4,-5这四个数中,任意两个数相乘,所得的积最大的是( ) A.10 B.12 C.-20 D.不是以上的答案

3、计算下列各题:

(1)(-10)(-9)= (2)(-9)(-10)= ;(3 )9(-2)= ; (4)(-2) 9 = ;

(5)(-6)(-5)= ; (6)(-5)(-6)=

六、体会联想:

1、有理数的乘法的计算步骤分哪两步?2.有理数的乘法法则是什么?

它山之石可以攻玉,以上就是差异网为大家带来的9篇《有理数的乘法数学教案》,您可以复制其中的精彩段落、语句,也可以下载DOC格式的文档以便编辑使用。