圆柱的体积优秀3篇

时间:2023-07-20 08:20:33 | 来源:啦啦作文网

作为一位杰出的教职工,时常会需要准备好教案,借助教案可以有效提升自己的教学能力。写教案需要注意哪些格式呢?以下是人见人爱的小编分享的3篇《圆柱的体积》,如果对您有一些参考与帮助,请分享给最好的朋友。

《圆柱的体积》教学设计 篇一

教学内容:

青教版九年义务教育六年制小学数学六年级下册第23—28页。

教材简析:

该信息窗呈现的是圆柱和圆锥形状的冰淇淋盒,并分别标出了它们的底面直径和高。引导学生提出问题,引入对圆柱、圆锥体积计算的探索和学习。“合作探索”中第一个红点部分是学习圆柱的体积。

教学目标:

1、结合具体情境,通过探索与发现,理解并掌握圆柱并能解决简单的实际问题。

2、经历探索圆柱计算公式的过程,进一步发展空间观念。

3、在观察与实验、猜测与验证、交流与反思等活动中,初步体会数学知识的产生、形成与发展的过程,体验数学活动充满着探索与创造,初步了解并掌握一些数学思想方法。

教学重点和难点:

圆柱、圆锥体积的计算方法,以及体积公式的探索推导过程。

教具准备:

多媒体课件、圆柱体积学具、沙子等。

第一课时

教学过程:

一、创设情境,激趣引入。

谈话:同学们,天气渐渐热了,在夏季同学们最喜欢的冷饮是什么?(生回答)

课件出示:两个圆柱体冰淇淋。

谈话:看,小明买了两个冰淇淋,你能猜猜哪种包装盒体积大吗?

(生猜测)这节课我们就来研究圆柱的体积。(板书课题——圆柱体的体积。)

设计意图:

从生活中常见的例子导入新课,从中培养学生在生活中发现数学问题、提出问题的意识。学生的猜测为后面的实验验证做好了铺垫,激发学生探究新知的欲望。

二、回忆旧知,实现迁移。

谈话:怎样求圆柱的体积呢?我们也许能从以前研究问题的方法里得到启示,找到解决问题的办法。请大家想一想,在学习圆的面积时,我们是怎样推导出圆的面积计算公式的?

(学生回答后,教师利用多媒体课件动态演示把圆等分切割,拼成一个近似的长方形,找出圆与所拼成的长方形之间的关系,进而推导出圆面积计算公式的过程。)

设计意图:

通过回顾圆的面积的推导方法,巧妙地运用旧知识进行迁移。

三、利用素材,探索新知。

㈠交流猜测

谈话:通过刚才的回顾,你们能想办法将圆柱转化成我们已经学过的立体图形来求体积吗?

生:我们学过长方体的体积,可不可以将圆柱转化成长方体呢?

师谈话:你的想法很好,怎样转化呢?

生讨论,交流。

生汇报,可能会有以下几种想法:

1、先在圆柱的底面上画一个最大的正方形,再竖着切掉四周,得到一个长方体,然后把切下的四块拼在一起。

2、可以把圆柱的底面分成许多相同的扇形,然后竖着切开,重新拼一拼。

3、如果是橡皮泥那样的,可以把它重新捏成一个长方体,就能计算出它的体积了。

谈话:请同学讨论和评价一下,哪一种方法更合理呢?引导学生按照第二种方法进行验证。

㈡实验验证

学生动手进行实验。

谈话:请每个小组拿出学具,按照刚才第3小组的方法把它转化为近似的长方体,并研究转化后的长方体和原来圆柱体积、底面积、高之间的关系。

学生合作操作,集体研究、讨论、记录。

设计意图本环节让学生亲自动手 操作,再次感受“化圆为方”的思想。动手操作,是学生发现规律和获取数学思想的重要途径。

四、分析关系,总结公式

1、全班交流

谈话:哪个小组愿意展示一下你们小组的研究结果?

引导学生发现:

转化后的形状变了,但是体积没有变,底面的面积没有变,高也没有变。

2、分析关系

引导说出:圆柱体转化成长方体后,虽然形状变了,但是长方体的体积和原来圆柱的体积相等,长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。

3、总结公式。

谈话:同学们真了不起!你们的发现非常正确。我们来看一看课件演示。

(课件分别演示将圆柱等分成16份、32份、64份的割拼过程,学生观察、思考。)

谈话:你发现了什么?

引导观察:分的份数越多,拼成的图形就越接近长方体。

(课件动态演示:圆柱的高——长方体的高,圆柱的底面积——长方体的底面积。)

谈话:其实大家刚才又采用了“化圆为方”的方法将圆柱转化成了长方体。你现在能总结出圆柱体积的计算公式吗?说一说你是怎样想的。

根据学生的回答教师板书:

长方体的体积 = 底面积 × 高

圆柱的体积 = 底面积 × 高

谈话:你能用字母表示圆柱的体积计算公式吗?V=Sh

设计意图教师给予适当的演示,沟通圆面积计算公式的推导方法与圆柱体积计算公式推导方法的共同点——转化法,便于学生顺利推导出圆柱体积的计算公式。

五、利用公式,解决问题。

自主练习第1题、第2题、第3题

设计意图巩固练习及时让学生利用结论解决问题,感受自己研究的重要价值,激发学习数学的兴趣。

六、课堂总结

《圆柱的体积》教案 篇二

教学内容:

P19-20页例5、例6及补充例题,完成“做一做”及练习三第1~4题。

教学目标:

1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。

2、初步学会用转化的数学思想和方法,解决实际问题的能力

3、渗透转化思想,培养学生的自主探索意识。

教学重点:

掌握圆柱体积的计算公式。

教学难点:

圆柱体积的计算公式的推导。

教学过程:

一、复习

1、复习圆面积计算公式的推导方法及过程。

2、什么叫物体的体积?长方体、正方体的体积公式是什么?(长方体的体积=长×宽×高,正方体的体积=棱长3,长方体和正方体体积的统一公式=底面积×高)

二、新课

1、圆柱体积计算公式的推导。

(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——课件演示)

(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)

(3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,V=Sh)

2、教学补充例题

(1)出示补充例题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?

(2)指名学生分别回答下面的问题:

① 这道题已知什么?求什么?

② 能不能根据公式直接计算?

③ 计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位)

(3)出示下面几种解答方案,让学生判断哪个是正确的.

①V=Sh

50×2.1=105(立方厘米)

答:它的体积是105立方厘米。

②2.1米=210厘米

V=Sh

50×210=10500(立方厘米)

答:它的体积是10500立方厘米。

③50平方厘米=0.5平方米

V=Sh

0.5×2.1=1.05(立方米)

答:它的体积是1.05立方米。

④50平方厘米=0.005平方米

V=Sh

0.005×2.1=0.0105(立方米)

答:它的体积是0.0105立方米。

先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单.对不正确的第①、③种解答要说说错在什么地方.

(4)做第20页的“做一做”。

学生独立做在练习本上,做完后集体订正.

3、引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?(V=πr2h)

4、教学例6

(1)出示例5,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?(应先知道杯子的容积)

(2)学生尝试完成例6。

① 杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2)

② 杯子的容积:50.24×10=502.4(cm3)=502.4(ml)

5、比较一下补充例题、例6有哪些相同的地方和不同的地方?(相同的是都要用圆柱的体积计算公式进行计算;不同的是补充例题已给出底面积,可直接应用公式计算;例6只知道底面直径,要先求底面积,再求体积.)

三、巩固练习

1、做第21页练习三的第1题.

2、练习三的第2题.

这两道题分别是已知底面半径(或直径)和高,求圆柱体积的习题.要求学生审题后,知道要先求出底面积,再求圆柱的体积。

四、布置作业

练习三第3、4题。

通过批阅作业,发现圆柱体的表面积正确率极低,主要有几方面原因:

1、计算错误;

2审题不认真,单位不统一;

3、灵活解决问题时,没能正确判断所求面积到底包含哪几部分。

为提升正确率,所以今天补充了一节是练习课,主要是指导学生完成教材中的习题。在此,想谈谈练习二的第11、19题。

第11题教材只要求学生根据切面形状进行连线,其实这题应该充分利用挖掘,不仅培养学生的'空间观念,同时还可提升学生解决实际问题的能力。所以在教学中,我补充了如下练习:

(1将一根高5分米的圆柱形木料沿底面直径垂直切成两部分,(如11题第2幅图),这时表面积比原来增加了40平方分米。这根圆柱形木料原来的表面积是多少平方分米?

(2一个圆柱的侧面展开是一个正方形,正方形的边长是12.56分米,求这个圆柱体的表积。

第19题解决决起来很繁琐,虽然课堂上我给予了学生十分充足的独立尝试练习时间,但在未给予任何提示的情况下全班仅4人全对,另有4人结果计算正确,但却未换算单位,正确率仅为7.4%。所以下次再教时,此题应加大指导力度。建议:先在小组内讨论“求涂油漆的面积也就是求什么?”然后强调单位换算,并复习平方米与平方厘米之间的进率(10000),最后再让学生分步列式解答。第2问要求“一共需要多少元”结合生活实际,学生应主动对计算结果取近似值。

第四课时教学反思

开放的设问结硕果

因为临时换课,所以今天是本学期开学以来第一次在学生未预习的情况下教学新课。没有预习,给学生的自主探索以更广阔的空间。当学生提出可以将圆柱的底面分成许多相等的扇形,把圆柱切开,拼成一个近似的长方体后,我请学生们观察并思考“转化后的长方体与圆柱体之间有什么联系呢?”

他们除了发现教材中所提到的体积不变、底面积不变、高不变外,还有不少新发现。如“长方体的长是圆柱体底面周长的一半”,“长方体的宽是圆柱体底面半径”, “圆柱体的侧面积是长方体前后两个面的面积总和”(魏勉)。当学生的发现由底面积涉及到侧面积时,我根据本班学情适时进行了拓展性提问,“将圆柱体转化为长方体,表面积有变化吗?如果有,有怎样的变化?”由此将圆柱体与长方体转化的探究由体积的变化引向了新的层面——表面积。

我将根据学情在练习课中补充相关练习:把一个高15厘米的圆柱体分割成若干份,再拼成一个近似的长方体,表面积增加了90平方厘米。那么这个圆柱的体积是多少?

今天的作业正确率明显提升,但全班有4名学生将圆柱体侧面积与体积公式混淆,列式全错,因此要加强辨析指导。自从让学生“创造”圆柱体表面积的另类推导方法及公式以来,孩子们探索并“创造”新公式的热情不断高涨。虽然,今天由于种种原因没能给学生上课,但他们仍旧将自己的新发现用纸条记录了下来送到我的手中。

创新(一)圆柱体侧面积:圆柱体的体积=(2πrh) :(πrrh)=2:r。(发现者:沈洪鑫)

创新(二)圆柱的体积=圆柱的侧面积÷2×r(发现者:兰晟)

根据这一发现,能够有效提高已知半径和侧面积求体积或已知体积求侧面积的习题。如:一根圆柱形木头的侧面积是37.68平方分米,底面半径是3分米,它的体积是多少平方分米?如果按常规做法为:首先求圆柱体的高37.68÷(3.14×2×3)=2(分米);然后再求圆柱体的体积3.14×32×2=56.52平方分米),共需要6步。如果根据上述发现,解答此题就只需要将37.68÷2×3即可求了正确结果,大大提高速度。

《圆柱的体积》数学教学设计 篇三

教学内容:

冀教版小学数学六年级下册第32—34页。

教学目标:

知识和技能:经历认识圆柱体积,探索圆柱体积计算公式及简单应用的过程。

过程与方法:让学生经历观察、猜想、证明等数学活动过程。探索并掌握圆柱体积公式,能计算圆柱的体积。

情感、态度和价值观:在探索圆柱体积的过程中,培养学生应用已有知识解决问题的能力,进一步体会转化的数学思想,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和结论的确定性。

教学重点:

探索并掌握圆柱体积公式,能计算圆柱的体积。

教学难点:

圆柱体积公式的推导过程及简单应用。

教具准备:

两个不易直观比较体积大小的圆柱桶,探索体积的课件

教学时数:

一课时

教学过程:

一、情景导入

1.出示“亮亮和爷爷过生日”的情境图。学生观察,说说发现了什么?想到了哪些问题?2.学生观察思考后回答。

生:亮亮和爷爷的生日蛋糕都是圆柱形的。

生:生日蛋糕大,就是蛋糕的体积大;生日蛋糕小,就是蛋糕的体积小。

3.出示两个圆柱体,学生观察、猜想。

师:同学们这两个圆柱体,哪个大些?(说出理由)生:我认为第一个大一些。生:我认为第二个大些。生:要是能算出体积就好了?

师:是啊,有时我们观察到的大小不一定准确,我们还是通过计算比较大小更准确些。今天我们就一起学习“圆柱的体积” 3.揭示并板书课题:圆柱的体积

(设计意图:创设情境导入激趣,通过观察让学生对圆柱体体积有了初步的认识,充分调动学生的求知欲,同时又为学生探索新知做好准备。)

二、合作探究

(一)引导回忆

1.设疑:看到课题你能想到哪些有关数学知识?你还想知道什么数学知识?2.学生回忆后回答。

3.教师结合学生的回答适当的板书。板书:长方体的体积=底面积x高生:我还想知道怎样求圆柱体积的大小?

师:同学们知道的可真不少,对以前学过的知识掌握得很扎实,那么怎样才能知道一个物体的体积有多大呢?现在我们就共同研究圆柱体积的计算方法。

(设计意图:通过创设问题情境,可以引导学生运用已有的生活经验和就知识积极思考,形成任务驱动的探究氛围。

(二)推导、论证“圆柱的体积” 1.引发思考猜想

师:我们以前学过学过了长方体和正方体的体积,我们知道了物体所占空间的大小叫做物体的体积。那么怎样计算圆柱的体积呢?请同学们猜想一下。

生:我们是不是象学过的长方体和正方体体积一样用“底面积x高”呢?

师:同学猜想的很有道理。

师:再回顾我们以前探索圆面积公式时是把圆转化成哪种图形来计算的?(课件演示:圆面积公式的推导)生:我们可以按照这样的方法把圆柱体转化为已经学过的长方体或正方体推导出圆柱体体积。 2.师生合作推导验证

教师用课件演示,学生观察思考。

师:把圆柱体平均分成16份、32份?同样可以拼成一个近似长方体。请同学们观察两次等份的异同。学生观察思考后回答

生:相同点是都可以拼成一个近似的长方体。

生:不同点是等分的份数不同,等分的份数越多,拼成的图形就越接近一个近似的长方体。

3.同学们观察很仔细,请你们想想,拼成的近似长方体和圆柱体有什么关系?你发现了什么?

4.小组同学讨论后汇报结果,同时板书。

生:(1)把圆柱拼成长方体后,形状变了,体积不变。

板书:长方体的体积=圆柱的体积

(2)拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。

师:(1)配合回答,演示课件,闪烁相应的部位,并板书相应的内容。

板书:圆柱的体积=底面积x高,用字母表示V=Sh

师:让学生书空,再次让学生巩固圆柱体积公式的推导过程。(设计意图:再探究圆柱体积计算的过程中,进一步体会转化的数学思想,体验数学问题的探索性和挑战性,感受数学结论的稳定性。

三、出示例题:一根圆柱形的木料,底面积是320平方厘米,高是米。这根木料的体积是多少立方厘米?

1.学生读题试算。

2.集体订正。

四、应用与拓展

1.完成教材第34“试一试”。(1)学生仔细看图,明确题意。

(2)学生自主完成后,全班交流。

五、课堂总结

本节课你有什么收获?还有什么疑问?附:板书

圆柱的体积

长方体的体积=底面积x高

圆柱的体积=底面积x高

教学反思:

本节课的教学体现了:

一、利用迁移规律引入新课,为学生创设良好的学习情境;

二、遵循学生的认知规律,引导学生观察、思考、猜想、论证,调动学生多种感观参与学习;

三、正确处理两主关系,充分发挥学生的主体作用,注意学生学习的参与过程及知识的获取过程,学生积极性高,学习效果好,达到预期效果。不足之处学生讨论时间控制太少,课后作业个别学生还是对公式不会灵活应用。

以上内容就是差异网为您提供的3篇《圆柱的体积》,希望可以启发您的一些写作思路,更多实用的范文样本、模板格式尽在差异网。