全等三角形教案(最新10篇)

时间:2023-07-12 16:54:29 | 来源:啦啦作文网

作为一名为他人授业解惑的教育工作者,就有可能用到教案,编写教案助于积累教学经验,不断提高教学质量。那么优秀的教案是什么样的呢?以下是人见人爱的小编分享的10篇《全等三角形教案》,希望能为您的思路提供一些参考。

数学《全等三角形》教案 篇一

教材分析

《三角形全等复习课内容》选用义务教育课程标准实验教材《数学》(华师大版)九年级上册,三角形全等是初中数学中重要的学习内容之一。本套教材把三角形全等看作是三角形相似的特殊情况,同时三角形全等的概念,三角形全等的识别方法,与命题与证明,尺规作图几部分内容相互联系紧密,尤其是尺规作图中作法的合理性和正确性的解释依赖于全等知识。本章中三角形全等的识别方法的给出都通过同学们画图、讨论、交流、比较得出,注重同学们实际操作能力,为培养同学们参与意识和创新意识提供了机会。

设计理念:

针对教材内容和初三同学们的实际情况,组织同学们通过摆拼全等三角形和探求全等三角形的活动,让同学们感悟到图形全等与平移、旋转、对称之间的关系,并通过同学们动手操作,让同学们掌握全等三角形的一些基本形式,在探求全等三角形的过程中,做到有的放矢。然后利用角平分线为对称轴来画全等三角形的方法来解决实际问题,从而达到会辨、会找、会用全等三角形知识的目的。

教学目标:

1、通过全等三角形的概念和识别方法的复习,让同学们体会辨别、探寻、运用全等三角形的一般方法,体会主动实验,探究新知的方法。

2、培养同学们观察和理解能力,几何语言的叙述能力及运用全等知识解决实际问题的能力。

3、在同学们操作过程中,激发同学们学习的兴趣,培养同学们主动探索,敢于实践的精神,培养同学们之间合作交流的习惯。

教学的重点和难点:

重点:运用全等三角形的识别方法来探寻三角形以及运用全等三角形的知识解决实际问题。

难点:运用全等三角形知识来解决实际问题。

教学过程设计:

一、创设问题情境:

某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全相同的玻璃,那么你认为它应保留哪一块?(教师用多媒体)

师:请同学们先独立思考,然后小组交流意见

生:…………

师:上述问题实质是判断三角形全等需要什么条件的问题。

今天我们这节课来复习全等三角形。(引出课题)。

师:识别三角形及等的方法有哪些?

生:SAS 、 SSS、 ASA、 AAS 、 HL。

复习回顾:练习1、将两根钢条AA/、BB/中点O连在一起,使AA/、BB/绕着点O自由转动,做成一个测量工具,则A/B/的长等于内槽宽AB,判定△OAB≌△OA/B/现由( )

练习2、已知AB//DE,且AB=DE,

(1)请你只添加一个条件,使△ABC≌△DEF,

你添加的条件是

(2)添加条件后,证明△ABC≌△DEF?

[根据不同的添加条件,要求同学们能够叙述三角形全等的条件和全等的现由,鼓励同学们大胆的表述意见]

二、探求新知:

师:请同学们将两张纸叠起来,剪下两个全等三角形,然后将叠合的两个三角形纸片放在桌面上,从平移、旋转、对称几个方面进行摆放,看看两个三角形有一些怎样的特殊位置关系?

请同组合作,交流,并把有代表性的摆放进行投影。

熟记全等三角形的基本形式,为探求全等三角形打下基础,提醒同学们注意两个全等三角形的对应边和对应角。同学们的摆放形式很多,包括那些平时数学成绩不好的同学们也跃跃欲试,教师给予肯定和鼓励激发他们学习的积极性和主动性。

例1、如图一张矩形纸片沿着对角线剪开,得到两张三角形纸片ABC、DEF,再将这两张三角形纸片摆成右图的形式,使点B、F、C、D处在同一条直线上,P、M、N为其他直线的交点。

(1)求证:AB⊥ED

(2)若PB=BC,请找出右图中全等三角形,并给予证明。

用多媒体演示图形的变化过程。

师:图3中AB与ED有怎样的位置关系?同同学们猜想一下结果。

生甲:AB垂直ED

师:为什么?可以从几方面来考虑?

生乙:可以从图形运动变化的过程来考虑

生丙:可以考虑全等在已知条件下,显然有△ABC≌△DEF,故∠A=∠D,又∠ANP=∠DNC,所以,∠APN=∠DCN=900,即AB⊥ED。

(根据同学们的回答,教师板演)

师:若PB=BC,找出右图中全等三角形,看看谁能找得最快?

生丁:△PBD≌△CBA(ASA)

师:板演,由AB⊥ED,可得到∠BPD=900,∠BPD=∠CBA,∠A=∠D,PB=BC,故有△PBD≌△CBA(ASA)。

师:还有其他三角形全等吗?

生:有,我连接BN,由勾股定理得PN=CN,就不难得到△APN≌△DCN。

(在错综复杂的图形中寻找全等三角形是一件不容易的事,要鼓励同学们大胆的猜想,努力探求,在同学们的叙述过程中,教师及时纠正同学们叙述中的错误,训练同学们严谨的学习态度和学习习惯。)

例2、(动手画)(1)已知OP为∠AOB平分线,请你利用该图画一对以OP所在直线为对称轴的全等三角形。

教师在黑板上画好∠AOB和直线OP,同学们独立思考,然后请几个同学们在黑板上演示。

师生总结:想要画出符合条件的三角形,只要在射线OA、OB上找到一对关于OP对称的点就可以了。

(2)利用上图作全等三角形方法,在△ABC中,∠B=600,∠ABC是直角,AD、CE是∠BAC,∠DCA的平分线,AD、CE相交于F,请判断FE与FD间数量关系。

师:请同学们用三角尺和量角器准确画出此图,然后量出EF、FD的长度,看看EF与FD长度

关系如何?

生:基本相等。

生:长度相等。

师:如何来证明他们相等?注意审题。

同学们先独立思考后,组内交流,等到有同学举手发言。

生:在AC上取点H,使AH=AE,则△AEF≌△AHF则EF=FH

师:为什么要这么做?你是怎么想到的?

生:因为要证明线段相等要考虑三角形全等,而EF、FD所在两个三角形显然不全等,又AD是平分线,在AC上找出E关于AD有对称点H得到△AEF≌△AHF。

师:这样只能得到EF=FH。

生:再证明△FHC≌△FDC。

生:先求出AD、CE是角平分线∠APC=1200,则∠DPC=∠EPA=∠APH=600,所以∠HPC=

∠DPC=600,PC=PC,∠3=∠4,因为△HCP≌△DCP(ASA)所以PD=PH。

(看清题意,猜想结果是解决探究题的重要环节,教师要留给同学们一定思考时间,同时鼓励同学们尝试和交流,鼓励同学们勇于探索以及同学之间的合作。)

师生共同小结:

1、熟记全等三角形的基本形态,会找全等三角形的对应边和对应角。

2、在错综复杂的几何图形中能够寻找全等三角形。

3、利用角平分线的对称性构造三角形全等,并利用三角形的全等性质解决线段之间的等量关系。

4、运用全等三角形的'识别法可以解决很多生活实际问题。

作业

1、在例2中,如果∠ACB不是直角,而(1)中的其他条件不变,请问:你在(1)中所得结论能成立吗?若成立,请证明,若不成立,请说明理由。

2、书本课后复习题

教学反思

本教学设计从以下三方面考虑:

1、根据同学们的学习情况,改进同学们的学习方式,强调合作交流,探索学习,教师在教学过程中,努力为同学们创设自主探索的氛围,让同学们真正成为课堂主体。

2、重视对同学们能力的培养,除常规的鼓励就大胆思考,积极发言,重视培养同学们观察、操作、测试、思考的能力,同学们的活跃,他们思考问题的方式是多种多样,教师从对完全更改,尊重他们的学习方式,这样有助于创新

3、重视对同学们学习习惯的培养,全等三角形是几何部分内容说明书,有较强逻辑性,教师板演,以及在同学们叙述中纠正同学们的错误,是培养同学们养成良好的习惯之一,同时同学们学习习惯多方面的,在合作交流中,培养同学们合作意识和合作习惯培养显得尤为重要。

全等三角形教案 篇二

教材分析:

《三角形全等复习课内容》选用义务教育课程标准实验教材《数学》(华师大版)九年级上册,三角形全等是初中数学中重要的学习内容之一。本套教材把三角形全等看作是三角形相似的特殊情况,同时三角形全等的概念,三角形全等的识别方法,与命题与证明,尺规作图几部分内容相互联系紧密,尤其是尺规作图中作法的合理性和正确性的解释依赖于全等知识。本章中三角形全等的识别方法的给出都通过学生画图、讨论、交流、比较得出,注重学生实际操作能力,为培养学生参与意识和创新意识提供了机会。

设计理念:

针对教材内容和初三学生的实际情况,组织学生通过摆拼全等三角形和探求全等三角形的活动,让学生感悟到图形全等与平移、旋转、对称之间的关系,并通过学生动手操作,让学生掌握全等三角形的一些基本形式,在探求全等三角形的过程中,做到有的放矢。然后利用角平分线为对称轴来画全等三角形的方法来解决实际问题,从而达到会辨、会找、会用全等三角形知识的目的。

教学目标:

1、通过全等三角形的概念和识别方法的复习,让学生体会辨别、探寻、运用全等三角形的一般方法,体会主动实验,探究新知的方法。

2、培养学生观察和理解能力,几何语言的叙述能力及运用全等知识解决实际问题的能力。

3、在学生操作过程中,激发学生学习的兴趣,培养学生主动探索,敢于实践的精神,培养学生之间合作交流的习惯。

教学的重点和难点:

重点:运用全等三角形的识别方法来探寻三角形以及运用全等三角形的知识解决实际问题。

难点:运用全等三角形知识来解决实际问题。

教学过程设计:

一、创设问题情境:

某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全相同的玻璃,那么你认为它应保留哪一块?(教师用多媒体)

师:请同学们先独立思考,然后小组交流意见

生:…………

师:上述问题实质是判断三角形全等需要什么条件的问题。

今天我们这节课来复习全等三角形。(引出课题)。

师:识别三角形及等的方法有哪些?

生:SAS 、 SSS、 ASA、 AAS 、 HL。

复习回顾:练习1、将两根钢条AA/、BB/中点O连在一起,使AA/、BB/绕着点O自由转动,做成一个测量工具,则A/B/的长等于内槽宽AB,判定△OAB≌△OA/B/现由( )

练习2、已知AB//DE,且AB=DE,

(1)请你只添加一个条件,使△ABC≌△DEF,

你添加的条件是

(2)添加条件后,证明△ABC≌△DEF?

[根据不同的添加条件,要求学生能够叙述三角形全等的条件和全等的现由,鼓励学生大胆的表述意见]

二、探求新知:

师:请同学们将两张纸叠起来,剪下两个全等三角形,然后将叠合的两个三角形纸片放在桌面上,从平移、旋转、对称几个方面进行摆放,看看两个三角形有一些怎样的特殊位置关系?

请同组合作,交流,并把有代表性的摆放进行投影。

熟记全等三角形的基本形式,为探求全等三角形打下基础,提醒学生注意两个全等三角形的对应边和对应角。学生的摆放形式很多,包括那些平时数学成绩不好的学生也跃跃欲试,教师给予肯定和鼓励激发他们学习的积极性和主动性。

例1、一张矩形纸片沿着对角线剪开,得到两张三角形纸片ABC、DEF,再将这两张三角形纸片摆成右图的形式,使点B、F、C、D处在同一条直线上,P、M、N为其他直线的交点。

(1)求证:AB⊥ED

(2)若PB=BC,请找出右图中全等三角形,并给予证明。

用多媒体演示图形的变化过程。

师:图3中AB与ED有怎样的位置关系?同学生猜想一下结果。

生甲:AB垂直ED

师:为什么?可以从几方面来考虑?

生乙:可以从图形运动变化的过程来考虑

生丙:可以考虑全等在已知条件下,显然有△ABC≌△DEF,故∠A=∠D,又∠ANP=∠DNC,所以,∠APN=∠DCN=900,即AB⊥ED。

(根据学生的回答,教师板演)

师:若PB=BC,找出右图中全等三角形,看看谁能找得最快?

生丁:△PBD≌△CBA(ASA)

师:板演,由AB⊥ED,可得到∠BPD=900,∠BPD=∠CBA,∠A=∠D,PB=BC,故有△PBD≌△CBA(ASA)。

师:还有其他三角形全等吗?

生:有,我连接BN,由勾股定理得PN=CN,就不难得到△APN≌△DCN。

(在错综复杂的图形中寻找全等三角形是一件不容易的事,要鼓励学生大胆的猜想,努力探求,在学生的叙述过程中,教师及时纠正学生叙述中的错误,训练学生严谨的学习态度和学习习惯。)

例2、(动手画)(1)已知OP为∠AOB平分线,请你利用该图画一对以OP所在直线为对称轴的全等三角形。

教师在黑板上画好∠AOB和直线OP,学生独立思考,然后请几个学生在黑板上演示。

师生总结:想要画出符合条件的三角形,只要在射线OA、OB上找到一对关于OP对称的点就可以了。

(2)利用上图作全等三角形方法,在△ABC中,∠B=600,∠ABC是直角,AD、CE是∠BAC,∠DCA的平分线,AD、CE相交于F,请判断FE与FD间数量关系。

师:请同学们用三角尺和量角器准确画出此图,然后量出EF、FD的长度,看看EF与FD长度

关系如何?

生:基本相等。

生:长度相等。

师:如何来证明他们相等?注意审题。

学生先独立思考后,组内交流,等到有同学举手发言。

生:在AC上取点H,使AH=AE,则△AEF≌△AHF则EF=FH

师:为什么要这么做?你是怎么想到的?

生:因为要证明线段相等要考虑三角形全等,而EF、FD所在两个三角形显然不全等,又AD是平分线,在AC上找出E关于AD有对称点H得到△AEF≌△AHF。

师:这样只能得到EF=FH。

生:再证明△FHC≌△FDC。

生:先求出AD、CE是角平分线∠APC=1200,则∠DPC=∠EPA=∠APH=600,所以∠HPC=

∠DPC=600,PC=PC,∠3=∠4,因为△HCP≌△DCP(ASA)所以PD=PH。

(看清题意,猜想结果是解决探究题的重要环节,教师要留给学生一定思考时间,同时鼓励学生尝试和交流,鼓励学生勇于探索以及同学之间的合作。)

师生共同小结:

1、熟记全等三角形的基本形态,会找全等三角形的对应边和对应角。

2、在错综复杂的几何图形中能够寻找全等三角形。

3、利用角平分线的对称性构造三角形全等,并利用三角形的全等性质解决线段之间的等量关系。

4、运用全等三角形的识别法可以解决很多生活实际问题。

作业:

1、在例2中,如果∠ACB不是直角,而(1)中的其他条件不变,请问:你在(1)中所得结论能成立吗?若成立,请证明,若不成立,请说明理由。

2、书本课后复习题

教学反思:

本教学设计从以下三方面考虑:

1、根据学生的学习情况,改进学生的学习方式,强调合作交流,探索学习,教师在教学过程中,努力为学生创设自主探索的氛围,让学生真正成为课堂主体。

2、重视对学生能力的培养,除常规的鼓励就大胆思考,积极发言,重视培养学生观察、操作、测试、思考的能力,学生的活跃,他们思考问题的方式是多种多样,教师从对完全更改,尊重他们的学习方式,这样有助于创新

3、重视对学生学习习惯的培养,全等三角形是几何部分内容说明书,有较强逻辑性,教师板演,以及在学生叙述中纠正学生的错误,是培养学生养成良好的习惯之一,同时学生学习习惯多方面的,在合作交流中,培养学生合作意识和合作习惯培养显得尤为重要。

数学《全等三角形》教案 篇三

【课前准备】

1、定义:能够的两个三角形叫全等三角形。

2、全等三角形的性质,全等三角形的判定方法见下表。

【例题讲解】

一。挖掘“隐含条件”判全等

如图,△ABE≌△ACD,由此你能得到什么结论?(越多越好)

1、如图AB=CD,AC=BD,则△ABC≌△DCB吗?说说理由。

变式训练:AC=BD,∠CAB=∠DBA,试说明:BC=AD

2、如图点D在AB上,点E在AC上,CD与BE相交于点O,

且AD=AE,AB=AC.若∠B=20°,CD=5cm,则∠CD的度数与BE的长。

3、如图若OB=OD,∠A=∠C,若AB=3cm,求CD的长。

变式训练2,如图AC=BD,∠C=∠D试说明:(1)AO=BO(2)CO=DO(3)BC=AD

二。添条件判全等

1、如图,已知AD平分∠BAC,要使△ABD≌△ACD,

根据“SAS”需要添加条件;

根据“ASA”需要添加条件;

根据“AAS”需要添加条件。

2、已知AB//DE,且AB=DE,

(1)请你只添加一个条件,使△ABC≌△DEF,

你添加的条件是。

三。熟练转化“间接条件”判全等

1、如图,AE=CF,∠AFD=∠CEB,DF=BE,△AFD与△CEB全等吗?

为什么?

2、如图,∠CAE=∠BAD,∠B=∠D,AC=AE,△ABC与△ADE全等吗?为什么?

3、“三月三,放风筝”,如图是小明同学制作的风筝,他根据AB=AD,CB=CD,不用度量,他就知道∠ABC=∠ADC,请你用学过的知识给予说明。

巩固练习:如图,在中,,沿过点B的一条直线BE

折叠,使点C恰好落在AB变的中点D处,则∠A的度数。

4、如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.说明:∠A=∠D

【当堂反馈】

1、(2006攀枝花市)如图,点E在AB上,AC=AD,请你添加一个条件,使图中存在全等三角形,并给予证明。所添条件为全等三角形是△≌△

2、如图,已知AB=AD,∠B=∠D,∠1=∠2,说明:BC=DE

3、如图,已知AB=DE,∠D=∠B,∠EFD=∠BCA,说明:AF=DC

4、等腰直角△ABC,其中AB=AC,∠BAC=90°,过B、C作经过A点直线L的垂线,垂足分别为M、N

(1)你能找到一对三角形的全等吗?并说明。

(2)BM,CN,MN之间有何关系?

若将直线l旋转到如下图的位置,其他条件不变,那么上题的结论是否依旧成立?

【课后作业】

1、如图,要用“SAS”说明ΔABC≌ΔADC,若AB=AD,则需要添加的条件是。

要用“ASA”说明ΔABC≌ΔADC,若∠ACB=∠ACD,则需要添加的条件是。

2、。如图,在ΔABC中,AD⊥BC,CE⊥AB.垂足分别为D.E,交于点H,请你添加一个适当的条件:,使ΔAEH≌ΔCEB.

(第3题)

(第4题)(第5题)(第6题)

3、如图,已知AD平分∠BAC,AB=AC,则此图中全等三角形有()

A.。2对B.3对C.4对D.5对

4、如图,ΔABC中,AB=AC,BE=EC,则由“SSS”可判定()

A.ΔABD≌ΔACDB.ΔABE≌ΔACEC.ΔBED≌ΔCEDD.以上答案都不对

5、如图,Rt△ABC中,∠C=90°,∠CAB=30°,用圆规和直尺作图,用两种方法把它分成两个三角形,且其中一个是等腰三角形。(保留作图痕迹,不要求写作法和证明)。

6、如图,一个六边形钢架ABCDEF,由6条钢管连接而成,为使这一钢架稳固,请你用3条钢管使它不能活动,你能设计两种不同的方案吗?

7:如图11-9在△ABC中。⑴分别以AB、AC为边向形外作正方形ABDE、ACFG.

试说明:①CE=BG;②CE⊥BG;

⑵如图11-10分别以AB、AC为边向形外作正三角形△ABD、△ACE.

试说明:①CD=BE;②求CD和BE所成的锐角的度数。

【拓展延伸】

如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF

(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由。

苏教版全等三角形教案 篇四

苏教版全等三角形教案(一)

【教学目标】

知识与技能:理解三角形全等的“边角边”的条件。掌握三角形全等的“SAS”条件,了解三角形的稳定性。能运用“SAS”证明简单的三角形全等问题。

过程与方法:经历探究全等三角形条件的过程,体会利用操作、归纳获得数学规律的过程。掌握三角形全等的“边角边”条件。在探索全等三角形条件及其运用过程中,培养有条理分析、推理,并进行简单的证明。

情感态度与价值观:通过画图、思考、探究来激发学生学习的积极性和主动性,并使学生了解一些研究问题的经验和方法,开拓实践能力与创新精神。

教学重点:三角形全等的条件。

教学难点:寻求三角形全等的条件。

教学方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。

学情分析:这节课是学了全等三角形的边边边后的一节课、將中间的边变为角探讨、学生一定能理解,根据之前的学情、学好这一节课有把握。

课前准备 全等三角形纸片、三角板、 【教学过程】:

一、创设情境,导入新课

[师]在上节课的讨论中,我们发现三角形中只给一个条件或两个条件时,都不能保证所画出的三角形一定全等。给出三个条件时,有四种可能,能说出是哪四种吗?

[生]三内角、三条边、两边一内角、两内角一边。

[师]很好,这四种情况中我们已经研究了两种,三内角对应相等不能保证两三角形一定全等;三条边对应相等的两三角形全等。今天我们接着研究第三种情况:“两边一内角”。

(一)问题:如果已知一个三角形的两边及一内角,那么它有几种可能情况?

[生]两种。

1.两边及其夹角。

2.两边及一边的对角。

[师]按照上节方法,我们有两个问题需要探究。

(二)探究1:先画一个任意△ABC,再画出一个△A/B/C/,使AB= A/B/、AC=A/C/、∠A=∠A/(即保证两边和它们的夹角对应相等).把画好的三角形A/B/C/剪下,放到△ABC上,它们全等吗?

探究2:先画一个任意△ABC,再画出△A/B/C/,使AB= A/B/、AC= A/C/、∠B=∠B/(即保证两边和其中一边的对角对应相等).把画好的△A/B/C/剪下,放到△ABC上,它们全等吗?

学生活动:

1.学生自己动手,利用直尺、三角尺、量角器等工具画出△ABC与△A/B/C/,将△A/B/C/剪下,与△ABC重叠,比较结果。

2.作好图后,与同伴交流作图心得,讨论发现什么样的规律。

教师活动:

教师可学生作完图后,由一个学生口述作图方法,教师进行多媒体播放画图过程,再次体会探究全等三角形条件的过程。

二 、探究

操作结果展示:

对于探究1:

画一个△A/B/C/,使A/B/=AB,A/C/=AC,∠A/=∠A.

1.画∠DA/E=∠A;

2.在射线A/D上截取A/B/=AB.在射线A/E上截取A/C/=AC;

3.连结B/C/.

将△A/B/C/剪下,发现△ABC与△A/B/C/全等。这就是说:两边和它们的夹角对应相等的两个三角形全等(可以简写为“边角边”或“SAS”).

小结 : 两边和它们的夹角对应角相等的两个三角形全等。简称“边角边”和“SAS”。

如图,在△ABC和△DEF中,

对于探究2:

学生画出的图形各式各样,有的说全等,有的说不全等。教师在此可引导学生总结画图方法:

1.画∠DB/E=∠B;

2.在射线B/D上截取B/A/=BA;

3.以A/为圆心,以AC长为半径画弧,此时只要∠C≠90°,弧线一定和射线B/E交于两点C/、F,也就是说可以得到两个三角形满足条件,而两个三角形是不可能同时和△ABC全等的。

也就是说:两边及其中一边的对角对应相等的两个三角形不一定全等。所以它不能作为判定两三角形全等的条件。

归纳总结:

“两边及一内角”中的两种情况只有一种情况能判定三角形全等。即:

两边及其夹角对应相等的两个三角形全等。(简记为“边角边”或“SAS”)

三、应用举例

[例]如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连结AC并延长到D,使CD=CA.连结BC并延长到E,使CE=CB.连结DE,那么量出DE的长就是A、B的距离。为什么?

[师生共析]如果能证明△ABC≌△DEC,就可以得出AB=DE.

在△ABC和△DEC中,AC=DC、BC=EC.要是再有∠1=∠2,那么△ABC与△DEC就全等了。而∠1和∠2是对顶角,所以它们相等。

证明:在△ABC和△DEC中

所以△ABC≌△DEC(SAS)

所以AB=DE.

1.填空:

(1)如图3,已知AD∥BC,AD=CB,要用边角边公理证明△ABC≌△CDA,需要三个条件,这三个条件中,已具有两个条件,一是AD=CB(已知),二是___________;还需要一个条件_____________(这个条件可以证得吗?).

(2)如图4,已知AB=AC,AD=AE,∠1=∠2,要用边角边公理证明△ABD≌ACE,需要满足的三个条件中,已具有两个条件:_________________________(这个条件可以证得吗?).

四、练习

1. 已知: AD∥BC,AD= CB(图3).

求证:△ADC≌△CBA.

2.已知:AB=AC、AD=AE、∠1=∠2(图4).

求证:△ABD≌△ACE.

五、课堂小结

1.根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件。

2.找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理。

六、布置作业

必做题:课本P43——44页习题12.2中的第3,选做题:第4题题

七、板书设计

《全等三角形》说课稿 篇五

1.全等三角形的性质

2.找对应元素的方法

运动法:翻折、旋转、平移

位置法:对应角→对应边,对应边→对应角

经验:大边→大边,大角→大角。公共边是对应边,公共角是对应角

数学《全等三角形》教案 篇六

【教学目标】

1、使学生理 解边边边公理的 内容,能运用边边边公理证明三角形全等,为证明线段相等或角相等创造条件;

2、继续培养学生画图、实 验,发现新知识的能力。

【重点难点】

1、难点:让学生掌握边边边 公理的内容和运用公理 的自觉性;

2、重点:灵活运用SSS判定两个三角形是否全等。

【教学过程 】

一、创设问题情境,引入新课

请问同学,老师在黑板上画得两个三角形,△ ABC与△ 全等吗? 你是如何判定的。

(同学们各抒己见,如:动手用纸剪下一个三角形,剪下叠到另一个三角形上,是否完全重合;测量两个三角形的所有边与角,观 察是否有三条边对应相等,三个角对应相等。)

上一节课我们已经探讨两个三角形只满足一个或两个边、角对应相等条件时,两个三角形不一定全等。满足三个条件时,两个三 角形是否全等呢?现在,我们就一起来探讨研究。

二、实践探索,总结规律

1、问题1:如果两个三角形的三条边分别相等,那么这两个三角形会全等吗?做一做:给你三条线段 、 、 ,分别为 、 、 ,你能画出这个三角形吗?

先请几位同学说说画图思路后,教师指导,同学们动手画,教师演示并叙述书写出步骤。

步骤:

(1)画一线段AB使 它的长度等于c(4.8cm)。

(2)以点A为圆心,以线段b(3cm)的长为半径画圆弧;以点B为圆心,以线段a(4cm)的长为半径画圆弧;两弧交于点C.

(3)连结AC、BC.

△ABC即为所求

把你画的三角形与其他同学的图形叠合在一起,你们会发现什么?

换三条线段,再试试看,是否有同样的 结论

请你结合画图、对比,说说你发现什么?

同学们各抒己见,教师总结:给定三条线段,如果它们能组 成三角形,那么所画的三角形都是全等的。 这样我们就得到判定三角形全等的一种简便 的方法: 如果两个三角形的 三 条边分别对应相等,那么这两个三角形全等.简写为“边边边”,或简记为(S.S.S.)。

2、问题2:你能用 相似三角形的判定法解释这个(SSS)三角形全等的判定法吗?

(我们已经知道,三条边对应成比例的两个三角形相似,而相似比为1时,三条边就分别对应相等,这两个三角形不但形状相同,而且大小都一样,即为全等三角形。)

3、问题3、你用这个“SSS”三角形全等的判定法解释三角形具有稳定性吗?

(只要三角形三边的长度确定,这个三角形的形状和大小就完全确定)

4、范例:

例1 四边形ABCD中,AD=BC,AB=DC,试说明△ABC≌△CDA. 解:已知 AD=BC,AB=DC , 又因为AC是公共边,由(S.S.S.)全等判定法,可知 △ABC≌△CDA

苏教版全等三角形教案 篇七

苏教版全等三角形教案(二)

【教学目标】

知识与技能:理解三角形全等的条件:角边角、角角边。三角形全等条件小结。掌握三角形全等的“角边角”“角角边”条件。能运用全等三角形的条件,解决简单的推理证明问题。

过程与方法:经历探究全等三角形条件的过程,进一步体会操作、归纳获得数学规律的过程。掌握三角形全等的“角边角”“角角边”条件。能运用全等三角形的条件,解决简单的推理证明问题。

情感态度与价值观:通过画图、探究、归纳、交流,使学生获得一些研究问题的经验和方法,发展实践能力和创新精神

教学重点:已知两角一边的三角形全等探究。

教学难点:灵活运用三角形全等条件证明。

教学方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。

学情分析:这节课是学了全等三角形的边边边、边角边后的一节课、有全面的学习经验、探讨出 角边角(ASA) 角角边(AAS)学生一定能理解。

课前准备 全等三角形纸片、三角板、

【教学过程】

一、创设情境,导入新课

1.复习:(1)三角形中已知三个元素,包括哪几种情况?

三个角、三个边、两边一角、两角一边。

(2)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?

三种:①定义;②SSS;③SAS.

2.[师]在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?

二 、探究

[师]三角形中已知两角一边有几种可能?

[生]1.两角和它们的夹边。

2.两角和其中一角的对边。

做一做:

三角形的两个内角分别是60°和80°,它们的夹边为4cm,你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?

学生活动:自己动手操作,然后与同伴交流,发现规律。

教师活动:检查指导,帮助有困难的同学。

活动结果展示:

以小组为单位将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等。

规律:

两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).

[师]我们刚才做的三角形是一个特殊三角形,随意画一个三角形ABC,能不能作一个△A/B/C/,使∠A=∠A/、∠B=∠B/、AB= A/B/呢?

[生]能。

学生口述画法,教师进行多媒体课件演示,使学生加深对“ASA”的理解。

[生]①先用量角器量出∠A与∠B的度数,再用直尺量出AB的边长。

②画线段A/B/,使A/B/=AB.

③分别以A/、B/为顶点,A/B/为一边作∠D A/B/、∠EB/A,使∠D/AB=∠CAB,∠EB/A/=∠CBA.

④射线A/D与B/E交于一点,记为C/

即可得到△A/B/C′.

将△A/B/C′与△ABC重叠,发现两三角形全等。

[师]于是我们发现规律:

两角和它们的夹边对应相等的两三角形全等(可以简写成“角边角”或“ASA”).

这又是一个判定三角形全等的条件。 [生]在一个三角形中两角确定,第三个角一定确定。我们是不是可以不作图,用“ASA”推出“两角和其中一角的对边对应相等的两三角形全等”呢?

[师]你提出的问题很好。温故而知新嘛,请同学们来验证这种想法。

三、练习

如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗?

证明:∵∠A+∠B+∠C=∠D+∠E+∠F=180°

∠A=∠D,∠B=∠E

∴∠A+∠B=∠D+∠E

∴∠C=∠F

在△ABC和△DEF中

∴△ABC≌△DEF(ASA).

于是得规律:

两个角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”).

四、例题

[例]如下图,D在AB上,E在AC上,AB=AC,∠B=∠C.

求证:AD=AE.

[师生共析]AD和AE分别在△ADC和△AEB中,所以要证AD=AE,只需证明△ADC≌△AEB即可。

学生写出证明过程。

证明:在△ADC和△AEB中

所以△ADC≌△AEB(ASA)

所以AD=AE.

[师]请同学们把三角形全等的判定方法做一个小结。

学生活动:自我回忆总结,然后小组讨论交流、补充。

有五种判定三角形全等的条件。

1.全等三角形的定义

2.边边边(SSS)

3.边角边(SAS)

4.角边角(ASA)

5.角角边(AAS)

推证两三角形全等,要学会联系思考其条件,找它们对应相等的元素,这样有利于获得解题途径。

练习:图中的两个三角形全等吗?请说明理由。

五、课堂小结

我们有五种判定三角形全等的方法:

1.全等三角形的定义

2.判定定理:边边边(SSS) 边角边(SAS) 角边角(ASA) 角角边(AAS)

六、布置作业

必做题:课本P44页习题12.2中的第6,选做题:第11题

七、板书设计

数学《全等三角形》教案 篇八

【教学目标】:

1、知识与技能:

1、三角形全等的条件:角边角、角角边。

2、三角形全等条件小结。

3、掌握三角形全等的“角边角”“角角边”条件。

4、能运用全等三角形的条件,解决简单的推理证明问题。

2、过程与方法:

1、经历探究全等三角形条件的过程,进一步体会操作、?归纳获得数学规律的过程。

2、掌握三角形全等的“角边角”“角角边”条件。

3、能运用全等三角形的条件,解决简单的推理证明问题。

3、情感态度与价值观:

通过画图、探究、归纳、交流,使学生获得一些研究问题的经验和方法,发展实践能力和创新精神

【教学情景导入】:

提出问题,创设情境

复习:

(1)三角形中已知三个元素,包括哪几种情况?

三个角、三个边、两边一角、两角一边。

(2)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?

三种:

①定义;

②SSS;

③SAS.

2、[师]在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?

导入新课

[师]三角形中已知两角一边有几种可能?

[生]1.两角和它们的夹边。

2、两角和其中一角的对边。

做一做:

三角形的两个内角分别是60°和80°,它们的夹边为4cm,?你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比较,观察它们是不是全等,你能得出什么规律?

学生活动:自己动手操作,然后与同伴交流,发现规律。

教师活动:检查指导,帮助有困难的同学。

活动结果展示:

以小组为单位将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等。

提炼规律:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”)。

[师]我们刚才做的三角形是一个特殊三角形,随意画一个三角形ABC,?能不能作一个△A′B′C′,使∠A=∠A′、∠B=∠B′、AB=A′B′呢?

[生]能。

学生口述画法,教师进行多媒体课件演示,使学生加深对“ASA”的理解。

[生]①先用量角器量出∠A与∠B的度数,再用直尺量出AB的边长。

②画线段A′B′,使A′B′=AB.

③分别以A′、B′为顶点,A′B′为一边作∠DA′B′、∠EB′A,使∠D′AB=∠CAB,∠EB′A′=∠CBA.

④射线A′D与B′E交于一点,记为C′ 即可得到△A′B′C′。

将△A′B′C′与△ABC重叠,发现两三角形全等。

[师]

于是我们发现规律:

两角和它们的夹边对应相等的两三角形全等(可以简写成“角边角”或“ASA”)。

这又是一个判定三角形全等的条件。 [生]在一个三角形中两角确定,第三个角一定确定。我们是不是可以不作图,用“ASA”推出“两角和其中一角的对边对应相等的两三角形全等”呢?

[师]你提出的问题很好。温故而知新嘛,请同学们来验证这种想法。

【教学过程设计】:

如图,在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗?

证明:∵∠A+∠B+∠C=∠D+∠E+∠F=180°

∠A=∠D,∠B=∠E

∴∠A+∠B=∠D+∠E

∴∠C=∠F

在△ABC和△DEF中

∴△ABC≌△DEF(ASA)。

于是得规律:

两个角和其中一角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)。

[例]如下图,D在AB上,E在AC上,AB=AC,∠B=∠C.

求证:AD=AE.

[师生共析]AD和AE分别在△ADC和△AEB中,所以要证AD=AE,只需证明△ADC≌△AEB即可。

学生写出证明过程。

证明:在△ADC和△AEB中

所以△ADC≌△AEB(ASA)

所以AD=AE.

[师]到此为止,在三角形中已知三个条件探索三角形全等问题已全部结束。请同学们把三角形全等的判定方法做一个小结。

学生活动:自己回忆总结,然后小组讨论交流、补充。

有五种判定三角形全等的条件。

1、全等三角形的定义

2、边边边(SSS)

3、边角边(SAS)

4、角边角(ASA)

5、角角边(AAS)

推证两三角形全等,要学会联系思考其条件,找它们对应相等的元素,这样有利于获得解题途径。

练习:图中的两个三角形全等吗?请说明理由。

答案:图(1)中由“ASA”可证得△ACD≌△ACB.图(2)由“AAS”可证得△ACE≌△BDC.

【课堂作业】 1.如图,BO=OC,AO=DO,则△AOB与△DOC全等吗?

小亮的思考过程如下。

△AOB≌△DOC

2、已知△ABC和△A′B′C′,下列条件中,不能保证△ABC和△A′B′C?′全等的是( )

A.AB=A′B′ AC=A′C′ BC=B′C′

B.∠A=∠A′ ∠B=∠B′ AC=A′C′

C.AB=A′B′ AC=A′C′ ∠A=∠A′

D.AB=A′B′ BC=B′C′ ∠C=∠C′

3、要说明△ABC和△A′B′C′全等,已知条件为AB=A′B′,∠A=∠A′,不需要的条件为( )

A.∠B=∠B′ B.∠C=∠C′; C.AC=A′C′ D.BC=B′C′

4、要说明△ABC和△A′B′C′全等,已知∠A=∠A′,∠B=∠B′,则不需要的条件是( A.∠C=∠C′ B.AB=A′B′; C.AC=A′C′ D.BC=B′C′

5、两个三角形全等,那么下列说法错误的是( )

A.对应边上的三条高分别相等; B.对应边的三条中线分别相等

C.两个三角形的面积相等; D.两个三角形的任何线段相等

6、如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF.

数学《全等三角形》教案 篇九

课程内容

边边边判定定理

选用教材

人教版数学八年级上册

授课人

崔志伟

授课章节

第十二章第二节

学 时

1

教学重点

掌握全等三角形的判定定理边边边,能运用该定理解决实际问题。

教学难点

探索三角形全等的条件,以及运用边边边定理画一角等于已知角

教学方法

学生合作探究法、教师讲解结合谈话法等综合教学方法

教学手段

黑板板书教学

课 堂 教 学 设 计

阶段

教学内容

导入部分

采用复习导入,教师首先提问学生回顾全等三角形的定义,以及全等三角形的性质。

学生在复习以上知识的条件下教师做出解释,上节课我们已经学习了三角形在满足三边对应相等,三角对应相等,则两三角形全等,那么在实际的运用过程中,需要这么多条件运用会很不方便,那么我们很容易想到,能不能简化条件,得出三角形全等呢?由此引出课题全等三角形的判定。

阶段

课堂教学设计

课程新授

教师让学生大胆想象,可以从一组对应关系相等开始探究,逐步上升到两组对应关系相等三组对应关系相等。

但是为了节约时间,可以让学生从两组开始,如若两组都不行,那一组肯定也不行,反之如若两组条件就足够了,再回头看看一组的情况。

接下来学生在教师的提问下思考二组对应条件的所有可能的情况,预设会有思考不全面的同学,教师即使揭示在一组边与一组角相等的情况下,边与角的关系可以为相邻,也有可能为相对。

学生在教师的提示下,探索发现满足两组对应关系相等的三角形不一定全等,由此可以断定一组对应关系相等也不能作为判定三角形全等的条件。接下来直接考虑三组对应相等关系的情况。

首先引导学生对三组对应关系相等进行分类。

预设学生部分可以全部考虑到,部分学生考虑不周到,这时教师可以请会的同学展示被同学忽略的情况即两组角与一组对边对应相等时,边可以为对边,也可以为邻边。

本节课将引导学生探索三边相等的情形,有了前面两组对应相等的经验,预设学生根据尺规作图可以画出三边等于已知三角形的三角形,接下来通过三角形全等的定义,让学生动手操作进行验证,发现可以完全重合,由此我们得到三组边对应相等的三角形全等。即SSS,教师解释S为英文边,side的首字母。

接下来请同学说出已知三角形与所作三角形之间存在的对应相等关系,预设学生可以很轻易说出。

由此教师揭示,实际上我们还学回了一个做角等于一只角的另外一种做法,即运用尺规作图画一角等于已知角。接下来,教师稍作解释,请学生探究讨论作图步骤。看谁的最简便。

学生探索过后,教师请学生回答自己的作图步骤,最后由教师板书最简易的作图步骤。

之后我将用练习的方式,加深同学对边边边判定定理的理解并加强应用能力。

作业

作业为书上的练习第二题,以及课后作业的第四题对应基础性练习即巩固性练习。

板书设计

采用归纳式的板书设计,主要板书两种即三种对应关系相等的种类,边边边判定定理的内容以及画一角等于已知角的步骤以及重要练习的过程。

小结

本结课内容比较多,主要体现在全等三角形判定的探索过程,为了节约时间,我选择让学生直接从两个条件开始探究,同时也不影响学生理解,教师主要以引导为主,学生自主探索学习。

全等三角形教案 篇十

一、教材分析

本节课的教学内容是人教版数学八年级上册第十一章 《全等三角形》的第一节。这是全章的开篇,也是全等条件的基础。它是继线段、角、相交线与平行线及三角形有关知识之后出现的。通过本节的学习,可以丰富和加深学生对已学图形的认识,同时为学习其他图形知识打好基础,具有承上启下的作用。

教材根据初中学生的认知规律和特点,采用由浅入深、由易到难、抓联系、促迁移的方法。通过生活中的实例创设情景,形成概念,再通过平移、翻折、旋转说明变换前后的两个三角形全等,进而得出全等三角形的相关概念及其性质。

二、教学目标分析

知识与技能

1.了解全等三角形的概念,通过动手操作,体会平移、翻折、旋转是考察两三角形全等的主要方法。

2.能准确确定全等三角形的对应元素。

3.掌握全等三角形的性质。

过程与方法

1.通过找出全等三角形的对应元素,培养学生的识图能力。

2.能利用全等三角形的概念、性质解决简单的数学问题。

情感、态度与价值观

通过构建和谐的课堂教学氛围,激发学生的学习兴趣,调动学生的学习积极性,使学生勇于提出问题,乐于探索问题,同时注重培养学生善于合作交流的良好情感和积极向上的学习态度。

三、教学重点、难点

重点:全等三角形的概念、性质及对应元素的确定。

难点:全等三角形对应元素的确定。

四、学情分析

学生在七年级时已经学过线段、角、相交线与平行线及三角形的有关知识,并学习了一些简单的说理,已初步具有对简单图形的分析和辨识能力,但八年级的学生仍处于以形象思维为主要思维形式的时期。为了发展学生的空间观念,培养学生的抽象思维能力,本节课将充分利用动画演示,来揭示图形的平移、翻折和旋转等变换过程,以便让学生在观察、分析中获得大量的感性认识,进而达到对全等三角形的理性认识。

五、教法与学法

本节课坚持“教与学、知识与能力的辩证统一”和“人人都能获得必需的数学”的原则,博采启发教学法、引探教学法、讲授教学法等诸多方法之长,借助多媒体手段引导学生观察、猜想和探究,促进学生自主学习,努力做到教与学的最优组合。

六、教学教程

Ⅰ.课题引入

1.电脑显示

问题:各组图形的形状与大小有什么特点?

一般学生都能发现这两个图形是完全重合的。

归纳:能够完全重合的两个图形叫做全等形。

2.学生动手操作

⑴在纸板上任意画一个三角形ABC,并剪下,然后说出三角形的三个角、三条边和每个角的对边、每个边的对角。

⑵问题:如何在另一张纸板再剪一个三角形DEF,使它与△ABC全等?

(学生分组讨论、提出方法、动手操作)

3.板书课题:全等三角形

定义:能够完全重合的两个三角形叫做全等三角形

“全等”用“≌”表示,读着“全等于”

如图中的两个三角形全等,记作:△ABC≌△DEF

Ⅱ.全等三角形中的对应元素

1. 问题:你手中的两个三角形是全等的,但是如果任意摆放能重合吗?该怎样做它们才能重合呢?

2.学生讨论、交流、归纳得出:

⑴.两个全等三角形任意摆放时,并不一定能完全重合,只有当把相同的角重合到一起(或相同的边重合到一起)时它们才能完全重合。这时我们把重合在一起的顶点、角、边分别称为对应顶点、对应角、对应边。

⑵.表示两个全等三角形时,通常把表示对应顶点字母写在对应的位置上,这样便于确定两个三角形的对应关系。

Ⅲ. 全等三角形的性质

1.观察与思考:

寻找甲图中两三角形的对应元素,它们的对应边

有什么关系?对应角呢?

(引导学生从全等三角形可以完全重合出发找等量关系)

全等三角形的性质:

全等三角形的对应边相等。

全等三角形的对应角相等。

2.用几何语言表示全等三角形的性质

如图:∵ABC≌ DEF

∴AB=DE,AC=DF,BC=EF

(全等三角形对应边相等)

∠A=∠D,∠B=∠E,∠C=∠F

(全等三角形对应角相等)

Ⅳ.探求全等三角形对应元素的找法

1.动画(几何画板)演示

(1).图中的各对三角形是全等三角形,怎样改变其中一个三角形的位置,使它能与另一个三角形完全重合?

归纳:两个全等的三角形经过一定的转换可以重合。一般是平移、翻折、旋转的方法。

(2).说出每个图中各对全等三角形的对应边、对应角

归纳:从运动的`角度可以很轻松地解决找对应元素的问题。可见图形转换的奇妙。

3. 归纳:找对应元素的常用方法有两种:

(1)从运动角度看

a.翻折法:一个三角形沿某条直线翻折与另一个三角形重合,从而发现对应元素。

b.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素。

c.平移法:沿某一方向推移使两三角形重合来找对应元素。

(2)根据位置元素来推理

a.有公共边的,公共边是对应边;

b.有公共角的,公共角是对应角;

c.有对顶角的,对顶角是对应角;

d.两个全等三角形最大的边是对应边,最小的边也是对应边;

e.两个全等三角形最大的角是对应角,最小的角(www.chayi5.com)也是对应角;

Ⅴ.课堂练习

练习1.△ABD≌△ACE,若∠B=25°, BD=6㎝,AD=4㎝,

你能得出△ACE中哪些角的大小,哪些边的长度吗?为什么 ?

练习2.△ABC≌△FED

⑴写出图中相等的线段,相等的角;

⑵图中线段除相等外,还有什么关系吗?请与同伴交

流并写出来。

Ⅵ.小结

1.这节课你学会了什么?有哪些收获?有什么感受?

2.通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用一些方法可以找到两个全等三角形的对应元素。这也是这节课大家要重点掌握的。

Ⅶ.作业

课本第92页1、2、3题

以上就是差异网为大家整理的10篇《全等三角形教案》,希望可以对您的写作有一定的参考作用,更多精彩的范文样本、模板格式尽在差异网。